精英家教网 > 高中数学 > 题目详情

【题目】科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到:任画…条线段,然后把它分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了由4条小线段构成的折线,称为“一次构造”;用同样的方法把每一条小线段重复上述步骤,得到由16条更小的线段构成的折线,称为“二次构造”;…;如此进行“n次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度大于初始线段的100倍,则至少需要构造的次数是( )(取

A.16B.17C.24D.25

【答案】B

【解析】

由题知,每一次构造即可将折线长度变成上一次长度的倍,故折线长度构成一个以为公比的等比数列,写出其通项公式,则要在构造过程中使得到的折线的长度大于初始线段的100倍,只需求解不等式,即可得解.

设初始长度为,各次构造后的折线长度构成一个数列

由题知,则为等比数列,

假设构造次后,折线的长度大于初始线段的100倍,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数x3x22xaR.

1)当a=3时,求函数的单调递减区间;

2)若对于任意x都有成立,求实数a的取值范围;

3)若过点可作函数图象的三条不同切线,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若函数R上的增函数,求实数a的取值范围;

(Ⅱ)讨论函数上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)设,证明:,当时,函数恒有两个不同零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为,点为棱的中点.

1)求证:平面

2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱中, 的中点.

(1)证明: 平面

(2)若,点在平面的射影在上,且侧面的面积为,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(),().

1)若恒成立,求实数的取值范围;

2)当时,过上一点的切线,判断:可以作出多少条切线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直角三角形ABC的三个顶点都在椭圆上,其中A01)为直角顶点.若该三角形的面积的最大值为,则实数a的值为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆柱OO1底面半径为1,高为πABCD是圆柱的一个轴截面.动点M从点B出发沿着圆柱的侧面到达点D,其距离最短时在侧面留下的曲线Γ如图所示.将轴截面ABCD绕着轴OO1逆时针旋转θ0θπ)后,边B1C1与曲线Γ相交于点P.

1)求曲线Γ长度;

2)当时,求点C1到平面APB的距离;

3)是否存在θ,使得二面角DABP的大小为?若存在,求出线段BP的长度;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案