精英家教网 > 高中数学 > 题目详情
若关于x的方程ln(x-2)+ln(5-x)=ln(m-x)有实根,实数m的取值范围是
 
考点:根的存在性及根的个数判断
专题:计算题,函数的性质及应用
分析:由题意得
x-2>0
5-x>0
,从而解得2<x<5;从而化ln(x-2)+ln(5-x)=ln(m-x)为(x-2)(5-x)=m-x;从而求解.
解答: 解:由题意,
x-2>0
5-x>0

解得,2<x<5;
ln(x-2)+ln(5-x)=ln(m-x)可化为
(x-2)(5-x)=m-x;
故m=-x2+8x-10=-(x-4)2+6;
∵2<x<5,
∴2<-(x-4)2+6≤6;
故答案为:(2,6].
点评:本题考查了方程的根与函数图象的关系应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等比例数列{an}中,
(1)a4=27,q=-3,求a7
(2)a2=18,a4=8,求a1与q;
(3)a5=4,a7=6,求a9
(4)a5-a1=15,a4-a2=6,求a3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,sinθ),
b
=(cosθ,-
3
),θ∈[0,2π).
(Ⅰ)若
a
b
,求tanθ的值;
(Ⅱ)若2|
a
|=|
b
|,求θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(
1
2
,0)和圆Q:4x2+4x+4y2-31=0,圆E过点P且与圆Q内切,求圆心E的轨迹G的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)周期为4,且当x∈(-1,3]时,f(x)=
k
1-x2
,x∈(-1,1]
1-|x-2|,x∈(1,3]
,其中k>0,若方程3f(x)=x恰有5个实数根,则k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面区域D1={(x,y)|
x≥-2
y≤2
x-y≤0
},D2={(x,y)|kx-y+2<0,k>0},在区域D1内随机选取一点M,且点M恰好在区域D2上的概率为p,若0<p≤
1
4
,则k的取值范围为(  )
A、k≥2
B、0<k≤1
C、k≥1
D、0<k≤
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若x→0时,(1-ax2 
1
4
-1与xsinx是等价无穷小,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{
1
an
}是首项为1的等差数列,a1,a2,a5成公比不为1的等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=anan+1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-2,-2),B(-2,6),C(4,-2),点P在圆x2+y2=4上运动,求|PA|2+|PB|2+|PC|2的最大值和最小值.

查看答案和解析>>

同步练习册答案