精英家教网 > 高中数学 > 题目详情
12.已知正方体ABCD-A1B1C1D1,E,F,G分别为AA1,A1B1,A1D1的中点.求证:平面EFG∥平面BDC1

分析 由已知得EG∥BC1,GF∥BD,由此能证明平面EFG∥平面BDC1

解答 证明:∵正方体ABCD-A1B1C1D1,E,F,G分别为AA1,A1B1,A1D1的中点,
∴EG∥AD1,又AD1∥BC1,∴EG∥BC1
GF∥B1D1,又B1D1∥BD,∴GF∥BD,
∵EG∩GF=G,BC1∩BD=B,
∴平面EFG∥平面BDC1

点评 本题考查面面平行的证明,是基础题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=log2(ax2-3x+2)
(1)若f(1)<2,求a的取值范围;
(2)若a=1,求满足$(\frac{1}{2})^{t}$<f(3)的t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数在(-∞,+∞)上为单调函数的是(  )
A.y=x2-xB.y=|x|C.y=x3+2xD.y=sinx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数y=f(x)图象上每个点的纵坐标保持不变,横坐标伸长到原来2倍,然后再将整个图象沿x轴左平移$\frac{π}{2}$个单位,沿y轴向下平移1个单位,得到函数y=$\frac{1}{2}$sinx,则y=f(x)的表达式为(  )
A.y=$\frac{1}{2}$sin(2x+$\frac{π}{2}$)+1B.y=$\frac{1}{2}$sin(2x-$\frac{π}{2}$)+1C.y=$\frac{1}{2}$sin(2x-$\frac{π}{4}$)+1D.y=$\frac{1}{2}$sin($\frac{1}{2}$x+$\frac{π}{4}$)+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,F为B1C1的中点,D,E分别是棱BC,CC1上的点,且AD⊥BC.
(1)求证;直线A1F∥平面ADE;
(2)E为C1C中点,能否在直线B1B上找一点N,使得A1N∥平面ADE?若存在,确定该点位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求下列函数的定义域:
(1)y=$\sqrt{1-lgx}$;
(2)y=log2(x-x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知lgx=3,则x=1000.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)已知log52=a,log53=b,用a、b表示log524;
(2)已知lg2=m,lg3=n,用m、n表示lg$\sqrt{4.5}$;
(3)已知lg25=x,用x表不lg2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.曲线y=4-$\root{3}{x-1}$的拐点是1.

查看答案和解析>>

同步练习册答案