精英家教网 > 高中数学 > 题目详情

【题目】如图,椭圆 的焦距与椭圆 的短轴长相等,且的长轴长相等,这两个椭圆在第一象限的交点为,直线经过轴正半轴上的顶点且与直线为坐标原点)垂直, 的另一个交点为 交于 两点.

(1)求的标准方程;

(2)求.

【答案】(1).(2).

【解析】试题分析:(1)由椭圆 )的焦距与椭圆 的短轴长相等,且的长轴长相等,可得所以从而可得的标准方程;(2)联立两椭圆方程可得点坐标,利用垂直关系可得的斜率,由点斜式可得的方程为直线方程分别与椭圆方程联立,利用韦达定理与弦长公式分别求出,从而可得结果.

试题解析:(1)由题意可得所以

的标准方程为

2)联立

易知 的方程为

联立

联立

,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)上的单调区间

(2) 均恒成立求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右有顶点分别是,上顶点是,圆的圆心到直线的距离是,且椭圆的右焦点与抛物线的焦点重合.

(Ⅰ)求椭圆的方程;

(Ⅱ)平行于轴的动直线与椭圆和圆在第一象限内的交点分别为,直线轴的交点记为.试判断是否为定值,若是,证明你的结论.若不是,举反例说明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的单调区间;

(2)设函数,若对于,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台中, 分别是 的中点, 平面, 是等边三角形, , ,.

(1)证明: 平面

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的切线斜率为2.

(Ⅰ)求的单调区间和极值;

(Ⅱ)若上无解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数),以原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(限定).

(1)写出曲线的极坐标方程,并求交点的极坐标;

(2)射线与曲线分别交于点异于原点),求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品(百台),其总成本为(万元),其中固定成本为万元,并且每生产百台的生产成本为万元(总成本固定成本生产成本).销售收入(万元)满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:

1)写出利润函数的解析式(利润销售收入总成本);

2)工厂生产多少台产品时,可使盈利最多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙二人进行一次围棋比赛,每局胜者得1分,负者得0分,约定一方比另一方多3分或满9局时比赛结束,并规定:只有一方比另一方多三分才算赢,其它情况算平局,假设在每局比赛中,甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立,已知前3局中,甲胜2局,乙胜1局.

(1) 求甲获得这次比赛胜利的概率;

(2)设表示从第4局开始到比赛结束所进行的局数,求得分布列及数学期望.

查看答案和解析>>

同步练习册答案