精英家教网 > 高中数学 > 题目详情
14.已知△ABC中,a,b,c分别是角A,B,C的对边,a=$\sqrt{2}$,b=$\sqrt{3}$,A=45°,则B=(  )
A.60°B.120°C.60°或120°D.90°

分析 运用正弦定理,可得sinB,结合A=45°,以及内角和定理,可得角B.

解答 解:根据正弦定理可知$\frac{a}{sinA}=\frac{b}{sinB}$,
∴sinB=$\frac{bsinA}{a}$=$\frac{\sqrt{3}•\frac{\sqrt{2}}{2}}{\sqrt{2}}$=$\frac{\sqrt{3}}{2}$,
∵B∈(0°,180°),且A=45°,
∴∠B=60°或120°,
故选:C.

点评 本题考查正弦定理的运用,同时考查特殊角的三角函数值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知线段AB长为8,C、D是线段AB上任意两点,则AC>CD的概率为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知O为坐标原点,双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,直线l:x=$\frac{{a}^{2}}{c}$与双曲线的一条渐近线交于点A,且△OAF的面积为$\frac{{a}^{2}}{2}$,则该双曲线的两条渐近线的夹角大小为90°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.a的值由如图程序框图算出,则二项式($\sqrt{x}$-$\frac{a}{x}$)9展开式的常数项为${C}_{9}^{3}×(-7)^{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0的左、右顶点恰好与双曲线C′:x2-y2=2的左、右焦点重合,且椭圆C与双曲线C′的离心率互为倒数.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点Q(1,0)的直线l与椭圆C相交于A,B两点.点P(4,3),记直线PA,PB的斜率分别为k1,k2,当k1•k2最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.计算${(lg5)^2}+lg2•lg50+{(\frac{4}{9})^{-\;\frac{1}{2}}}$的值为(  )
A.$\frac{7}{2}$B.$\frac{5}{2}$C.$\frac{5}{3}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.数列{an}的前n项和是Sn,且2an-Sn=1.
(1)证明{an}是等比数列并求{an}的通项公式;
(2)记bn=2n+1an,cn=log2b1+log2b2+…+log2bn,Tn=$\frac{1}{{c}_{1}}$+$\frac{1}{{c}_{2}}$+…+$\frac{1}{{c}_{n}}$,求使k$\frac{n•{2}^{n}}{n+1}$≥(2n-9)Tn恒成立的实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一条渐近线与直线l:2x+y+2=0垂直,则此双曲线的离心率是(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{5}}{2}$C.$\sqrt{5}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,角A、B、C的对边分别为a、b、c,已知A=$\frac{π}{6}$,a=1,b=2,则c=(  )
A.$1或\sqrt{3}$B.$2或\sqrt{3}$C.$\sqrt{3}-1$D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案