精英家教网 > 高中数学 > 题目详情
17.如图所示.在120°的二面角α-AB-β中AC?α,BD?β,且AC⊥AB,BD⊥AB,垂足分别为A、B,已知AC=AB=BD=6,试求线段CD的长.

分析 由题意,$\overrightarrow{CD}$=$\overrightarrow{CA}$+$\overrightarrow{AB}$+$\overrightarrow{BD}$,两边平方,即可求线段CD的长.

解答 解:由题意,$\overrightarrow{CD}$=$\overrightarrow{CA}$+$\overrightarrow{AB}$+$\overrightarrow{BD}$,
∴$\overrightarrow{CD}$2=($\overrightarrow{CA}$+$\overrightarrow{AB}$+$\overrightarrow{BD}$)2=$\overrightarrow{CA}$2+$\overrightarrow{AB}$2+$\overrightarrow{BD}$2+2$\overrightarrow{CA}$•$\overrightarrow{AB}$+2$\overrightarrow{AB}$•$\overrightarrow{BD}$+2$\overrightarrow{CA}$•$\overrightarrow{BD}$
=36+36+36+2×$6×6×\frac{1}{2}$=144,
∴CD=12.

点评 本题考查空间距离的计算,考查向量知识的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知:在四面体ABCD中,E、H,分别为棱AB、AD上靠近点A$\frac{1}{3}$的分点,F、G分别是BC、CD上的中点,判断四边形EFGH的形状并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2+bx+c.
(1)当b=c=0时,曲线f(x)的一条切线的斜率是2,求切点坐标及切线方程;
(2)若f(x)在x=-1处有极值2,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知回归直线方程为y=25-2x,则x=10时y的估计值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.命题“若x,y都是偶数,则x+y是偶数”的逆否命题是(  )
A.若x,y不都是偶数,则x+y不是偶数B.若x,y都是偶数,则x+y不是偶数
C.若x+y是偶数,则x,y都是偶数D.若x+y不是偶数,则x,y不都是偶数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知p:x≤m,q:|x-2|<1,若p是q的必要不充分条件,则实数m的取值范围是[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示,某几何体的三视图,则该几何体的体积为(  )
A.$\frac{16}{3}$B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.a、b、c为三条不重合的直线,α、β、γ为三个不重合平面,现给出四个命题
①$\left.{\begin{array}{l}{a∥γ}\\{b∥γ}\end{array}}\right\}⇒a∥b$  ②$\left.\begin{array}{l}α∥c\\ β∥c\end{array}\right\}⇒α∥β$ ③$\left.\begin{array}{l}α∥γ\\ β∥γ\end{array}\right\}⇒α∥β$  ④$\left.\begin{array}{l}α∥c\\ a∥c\end{array}\right\}⇒α∥a$
其中正确的命题是(  )
A.??①②B.?③④C.?③D.??③②

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+2ax+2.
(1)若方程f(x)=0有两不相等的正根,求a的取值范围;
(2)若函数f(x)对任意x∈R都有f(x)=f(2-x)成立,且对任意x∈(0,3)都有不等式f(x)<2x+m恒成立,求实数m的取值范围;
(3)设g(a)是f(x)在x∈[-5,5]的最小值,求g(a)的最大值.

查看答案和解析>>

同步练习册答案