精英家教网 > 高中数学 > 题目详情

【题目】已知曲线在点 处的切线平行直线,且点在第三象限.

1)求的坐标;

2)若直线, 也过切点 ,求直线的方程.

【答案】(12

【解析】试题分析:(1)根据曲线方程求出导函数,因为已知横线的斜率为,根据切线与已知直线平行得到斜率都为,所以令导函数等于得到关于的方程,求出方程的接,即为切点的横坐标,代入曲线方程即可求解切点的纵坐标,又因为切点在第三象限,进而写出满足条件的切点坐标;(2)由直线的斜率为,根据两直线垂直时斜率乘积为,得出直线的斜率为,又根据(1)中求得切点坐标,写出直线的方程即可.

试题解析:y=x3+x2,得y′=3x2+1

由已知得3x2+1=4,解之得x=±1.x=1时,y=0;x=1时,y=4.

P0在第三象限,

切点P0的坐标为 (1,4).

⑵∵直线,的斜率为4,直线l的斜率为,

∵l过切点P0,P0的坐标为 (1,4)

直线l的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某班同学利用国庆节进行社会实践,对[2555]岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为低碳族,否则称为非低碳族,得到如下统计表和各年龄段人数频率分布直方图:

组数

分组

低碳族的人数

占本组的频率

第一组

[2530)

120

0.6

第二组

[3035)

195

第三组

[3540)

100

0.5

第四组

[4045)

0.4

第五组

[4550)

30

0.3

第六组

[5055]

15

0.3

(1)补全频率分布直方图并求 的值;

(2)从年龄段在[4050)低碳族中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[445)岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域为的函数,若满足①;②当,且时,都有;③当,且时, ,则称为“偏对函数”.现给出四个函数: . 则其中是“偏对称函数”的函数个数为( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为。在以原点为极点, 轴正半轴为极轴的极坐标系中,圆的方程为

(1)写出直线的普通方程和圆的直角坐标方程;

(2)若点P坐标为,圆与直线交于两点,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)求函数的单调区间;

(2)若函数有两个零点,求满足条件的最小正整数的值;

(3)若方程,有两个不相等的实数根,比较与0的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是等差数列,满足a1=3,a4=12,数列{bn}满足b1=4,b4=20,且{bn-an}为等比数列.

(1)求数列{an}和{bn}的通项公式;

(2)求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知某曲线C的极坐标方程为,直线的极坐标方程为

1)求该曲线C的直角坐标系方程及离心率

2)已知点为曲线C上的动点,求点到直线的距离的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市化工厂三个车间共有工人1 000名,各车间男、女工人数如下表:

第一车间

第二车间

第三车间

女工

173

100

y

男工

177

x

z

已知在全厂工人中随机抽取1名,抽到第二车间男工的可能性是0. 15.

(1)求x的值;

(2)现用分层抽样的方法在全厂抽取50名工人,问应在第三车间抽取多少名?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处的切线与直线垂直.(注: 为自然对数的底数)

(1)求的值;

(2)若函数在区间上存在极值,求实数的取值范围;

(3)求证:当时, 恒成立.

查看答案和解析>>

同步练习册答案