精英家教网 > 高中数学 > 题目详情
如图,正方体ABCD—A1B1C1D1中,E为AB中点,F为正方形BCC1B1的中心.

(1)求直线EF与平面ABCD所成角的正切值;
(2)求异面直线A1C与EF所成角的余弦值.
(1) (2)

试题分析:解法一:(1)取BC中点H,连结FH,EH,设正方体棱长为2.
∵F为BCC1B1中心,E为AB中点.
∴FH⊥平面ABCD,FH=1,EH=
∴∠FEH为直线EF与平面ABCD所成角,且FH⊥EH.
∴tan∠FEH===.……6分
(2)取A1C中点O,连接OF,OA,则OF∥AE,且OF=AE.
∴四边形AEFO为平行四边形.∴AO∥EF.
∴∠AOA1为异面直线A1C与EF所成角.
∵A1A=2,AO=A1O=
∴△AOA1中,由余弦定理得cos∠A1OA=.……12分
解法二:设正方体棱长为2,以B为原点,BC为x轴,BA为y轴,BB1为z轴,建立空间直角坐标系.则B(0,0,0),B1(0,0,2),E(0,1,0),F(1,0,1),
C(2,0,0),A1(0,2,2).
(1)=(1,-1,1),=(0,0,2),且为平面ABCD的法向量.
∴cos<>=
设直线EF与平面ABCD所成角大小为θ.
∴sinθ=,从而tanθ=.……6分
(2)∵=(2,-2,-2).∴cos<>=
∴异面直线A1C与EF所成角的余弦值为.……12分
点评:解决的关键是根据异面直线所成角的定义, 以及线面角的概念,结合向量法来得到,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱的侧棱长为3,,且分别是棱上的动点,且
(1)证明:无论在何处,总有
(2)当三棱柱.的体积取得最大值时,求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

将正方形沿对角线折成一个直二面角,点到达点,则异面直线所成角是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在长方体ABCD—A1B1C1D1中,AD=AA1=1,AB=2,E为AB的中点,F为CC1的中点.

(1)证明:B F//平面E CD1
(2)求二面角D1—EC—D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,侧棱底面,底面为矩形,的上一点,且为PC的中点.

(Ⅰ)求证:平面AEC;
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体ABCD—A1B1C1D1中,M、N、P、Q分别是棱AB、BC、CD、CC1的中点,直线MN与PQ所成的度数是     (  )
A.    B.    C.    D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体中,直线与平面所成的角的大小为(   )
A.900B.600C.450D.300

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知二面角的平面角是锐角,平面内有一点的距离为3,点到棱距离为4,那么=       

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABCD是直角梯形,∠ABC=∠BAD=90°,SA⊥
平面ABCD, SA=AB=BC=2,AD=1.

(Ⅰ)求SC与平面ASD所成的角余弦;
(Ⅱ)求平面SAB和平面SCD所成角的余弦.

查看答案和解析>>

同步练习册答案