精英家教网 > 高中数学 > 题目详情
20.设向量$\vec a、\vec b$是互相垂直的两个单位向量,且$|\vec a+3\vec b|=m|\vec a-\vec b|$,则实数m的值为(  )
A.$\sqrt{2}$B.$2\sqrt{2}$C.$\sqrt{5}$D.$2\sqrt{5}$

分析 根据向量为单位向量且互相垂直,得到|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,$\overrightarrow{a}•\overrightarrow{b}$=0,再把所给的式子两边平方,即可求出m的值.

解答 解:∵向量$\vec a、\vec b$是互相垂直的两个单位向量,
∴|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,$\overrightarrow{a}•\overrightarrow{b}$=0,
∵$|\vec a+3\vec b|=m|\vec a-\vec b|$,
∴|$\overrightarrow{a}$+3$\overrightarrow{b}$|2=m2|$\overrightarrow{a}$-$\overrightarrow{b}$|2
∴1+9=m2(1+1),
∴m=$\sqrt{5}$,
故选:C

点评 本题考查了单位向量和向量的垂直以及向量的模的计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若不同的两点A,B到平面α的距离相等,则下列命题中一定正确的是(  )
A.A,B两点在平面α的同侧B.A,B两点在平面α的异侧
C.过A,B两点必有垂直于平面α的平面D.过A,B两点必有平行于平面α的平面

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知f(1+logax)=$\sqrt{2}x-1({a>0且a≠1})$.若f(4)=3,则a=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知回归直线方程是:$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,假设学生在高中时数学成绩和物理成绩是线性相关的,若5个学生在高一下学期某次考试中数学成绩x(总分150分)和物理成绩y(总分100分)如表格所示:
(Ⅰ)求这次高一数学成绩和物理成绩间的线性回归方程;
(Ⅱ)若小红这次考试的物理成绩是93分,你估计她的数学成绩是多少分呢?(精确到0.1).
($\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{1}{|x|-2}$.
(1)在坐标系内作出该函数的大致图象,并写出函数的单调递增区间;
(2)若方程f(x)-k=0恰有一个实数根,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a>0,b>0,且$\frac{1}{a}+\frac{1}{b}=2$.
(1)求ab的最小值;
(2)求a+2b的最小值,并求出a,b相应的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知(x,y)在映射f下的像是(x+y,x-y),则像(2,3)在f下的原像为(2.5,-0.5).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)在定义域(-1,1)上是减函数,且f(a-1)>f(1-3a),则实数a的取值范围为(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是(  )
A.(7,5)B.(5,7)C.(2,10)D.(10,1)

查看答案和解析>>

同步练习册答案