精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线的中心在原点,焦点在坐标轴上,离心率为,且过点.

1)求双曲线的方程;

2)若点在双曲线上,求 的面积.

【答案】1(2).

【解析】

1)设出双曲线的方程,代入点P的坐标,即可得到双曲线的方程;

2)利用点M3m)在双曲线上,求出m值,进而利用S|F1F2||m|,即可求△F1MF2的面积.

解:(1)∵,∴可设双曲线的方程x2y2λ

∵双曲线过点P4),∴1610λ,即λ6

∴双曲线的方程x2y26

2)由(1)知,双曲线中ab

,∴

|F1F2|4

∵点M3m)在双曲线上,∴9m26,∴|m|

∴△F1MF2的面积为S|F1F2||m|6

即△F1MF2的面积为6

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《九章算术》是中国古代数学专著,其中的“更相减损术”可以用来求两个数的最大公约数,即“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之.”翻译成现代语言如下:第一步,任意给定两个正整数,判断它们是否都是偶数,若是,用2约简;若不是,执行第二步:第二步,以较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,知道所得的数相等为止,则这个数(等数)或这个数与约简的数的乘积就是所求的最大公约数.现给出更相减损术的程序图如图所示,如果输入的,则输出的为( ).

A. 3B. 6C. 7D. 8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,当P(xy)不是原点时,定义P伴随点

P是原点时,定义P伴随点为它自身,平面曲线C上所有点的伴随点所构成的曲线定义为曲线C伴随曲线”.现有下列命题:

若点A伴随点是点,则点伴随点是点A

单位圆的伴随曲线是它自身;

若曲线C关于x轴对称,则其伴随曲线关于y轴对称;

一条直线的伴随曲线是一条直线.

其中的真命题是_____________(写出所有真命题的序列).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴长为,离心率为,过右焦点的直线与椭圆交于不同两点.线段的垂直平分线交轴于点.

(1)求椭圆的方程;

(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】P是抛物线上一动点,则点P到点的距离与P到直线的距离和的最小值是(

A.B.C.3D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为,a为常数)),过点、倾斜角为的直线的参数方程满足,(为参数).

(1)求曲线C的普通方程和直线的参数方程;

(2)若直线与曲线C相交于A、B两点(点P在A、B之间),且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形ABCD,AD//BC,ABC=,ADC=PA⊥平面ABCDPA=.

(1)求直线AD到平面PBC的距离;

(2)求出点A到直线PC的距离;

(3)在线段AD上是否存在一点F,使点A到平面PCF的距离为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 的两条渐近线与抛物线的准线分别交于两点.若双曲线的离心率为的面积为为坐标原点,则抛物线的焦点坐标为 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为点,其离心率为,短轴长为.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过点的直线与椭圆交于两点,过点的直线与椭圆交于两点,且,证明:四边形不可能是菱形.

查看答案和解析>>

同步练习册答案