【题目】已知双曲线的中心在原点,焦点在坐标轴上,离心率为,且过点.
(1)求双曲线的方程;
(2)若点在双曲线上,求 的面积.
科目:高中数学 来源: 题型:
【题目】《九章算术》是中国古代数学专著,其中的“更相减损术”可以用来求两个数的最大公约数,即“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之.”翻译成现代语言如下:第一步,任意给定两个正整数,判断它们是否都是偶数,若是,用2约简;若不是,执行第二步:第二步,以较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,知道所得的数相等为止,则这个数(等数)或这个数与约简的数的乘积就是所求的最大公约数.现给出更相减损术的程序图如图所示,如果输入的,,则输出的为( ).
A. 3B. 6C. 7D. 8
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为;
当P是原点时,定义P的“伴随点“为它自身,平面曲线C上所有点的“伴随点”所构成的曲线定义为曲线C的“伴随曲线”.现有下列命题:
①若点A的“伴随点”是点,则点的“伴随点”是点A
②单位圆的“伴随曲线”是它自身;
③若曲线C关于x轴对称,则其“伴随曲线”关于y轴对称;
④一条直线的“伴随曲线”是一条直线.
其中的真命题是_____________(写出所有真命题的序列).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为(,a为常数)),过点、倾斜角为的直线的参数方程满足,(为参数).
(1)求曲线C的普通方程和直线的参数方程;
(2)若直线与曲线C相交于A、B两点(点P在A、B之间),且,求和的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在梯形ABCD中,AD//BC,∠ABC=,,∠ADC=,PA⊥平面ABCD且PA=.
(1)求直线AD到平面PBC的距离;
(2)求出点A到直线PC的距离;
(3)在线段AD上是否存在一点F,使点A到平面PCF的距离为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线 的两条渐近线与抛物线的准线分别交于,两点.若双曲线的离心率为,的面积为,为坐标原点,则抛物线的焦点坐标为 ( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左、右焦点分别为点,,其离心率为,短轴长为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过点的直线与椭圆交于,两点,过点的直线与椭圆交于,两点,且,证明:四边形不可能是菱形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com