精英家教网 > 高中数学 > 题目详情
(2013•宁波二模)在△ABC中,角A,B,C所对的边分别为a,b,c,设函数f(x)=cosx•cos(x-A)-
1
2
cosA
(x∈R).
(Ⅰ)求函数f(x)的最小正周期和最大值;
(Ⅱ)若函数f(x)在x=
π
3
处取得最大值,求
a(cosB+cosC)
(b+c)sinA
的值.
分析:(Ⅰ)利用两角和差的正弦公式、余弦公式化简函数f(x)的解析式为
1
2
cos(2x-A)
,由此可求它的最大值.
(Ⅱ)由( I)知:由
3
-A=2kπ,k∈Z
,求得A的值,再利用正弦定理及两角和差的正弦公式、余弦公式,化简要求的式子,求得结果.
解答:解:(Ⅰ)依题意得f(x)=cos2xcosA+cosxsinxsinA-
1
2
cosA
…(2分)
=
1
2
(cos2x•cosA+sin2x•sinA)
=
1
2
cos(2x-A)
,…(5分)
所以T=π,(f(x))max=
1
2
.…(7分)
(Ⅱ)由( I)知:由
3
-A=2kπ,k∈Z
,得A=
3
-2kπ∈(0,π)

所以A=
3

a(cosB+cosC)
(b+c)sinA
=
cosB+cosC
sinB+sinC
=
cos(
π
3
-C)+cosC
sin(
π
3
-C)+sinC
=
3
2
cosC+
3
2
sinC
3
2
cosC+
1
2
sinC
=
3
.…(14分)
点评:本题主要考查两角和差的正弦公式、余弦公式,正弦定理以及二倍角公式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•宁波二模)设公比大于零的等比数列{an}的前n项和为Sn,且a1=1,S4=5S2,数列{bn}的前n项和为Tn,满足b1=1,Tn=n2bn,n∈N*
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设Cn=(Sn+1)(nbn-λ),若数列{Cn}是单调递减数列,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波二模)设函数f(x)的导函数为f′(x),对任意x∈R都有f′(x)>f(x)成立,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波二模)已知函数f(x)=a(x-1)2+lnx.a∈R.
(Ⅰ)当a=-
1
4
时,求函数y=f(x)的单调区间;
(Ⅱ)当x∈[1,+∞)时,函数y=f(x)图象上的点都在不等式组
x≥1
y≤x-1
所表示的区域内,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波二模)如图是某学校抽取的n个学生体重的频率分布直方图,已知图中从左到右的前3个小组的频率之比为1:2:3,第3个小组的频数为18,则的值n是
48
48

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波二模)已知两非零向量
a
b
,则“
a
b
=|
a
||
b
|”是“
a
b
共线”的(  )

查看答案和解析>>

同步练习册答案