分析:(Ⅰ)根据题意:△a
n=a
n+1-a
n=(n+1)
2-(n+1)-n
2+n=5n-4,所以△a
n+1-△a
n=6.由此能够证明{△a
n}是等差数列.
(Ⅱ)由△
2a
n-△a
n+1+a
n=-2
n,知△a
n+1-△a
n-△a
n+1+a
n=-2
n,所以△a
n-a
n=2
n.由此入手能够求出数列{a
n}的通项公式.
(Ⅲ)由a
n=n•2
n-1,b
n=
=
=
,当n≥2,n∈N
*时,
=
=
(
-
),由此入手,能够证明b
1+
+…+
<
.
解答:解:(Ⅰ)根据题意:△a
n=a
n+1-a
n=(n+1)
2-(n+1)-n
2+n=5n-4 (2分)
∴△a
n+1-△a
n=6.
∴数列{Da
n}是首项为1,公差为5的等差数列.(3分)
(Ⅱ)由△
2a
n-△a
n+1+a
n=-2
n,∴△a
n+1-△a
n-△a
n+1+a
n=-2
n,?△a
n-a
n=2
n.(5分)
而△a
n=a
n+1-a
n,∴a
n+1-2a
n=2
n,∴
-
=
,(6分)
∴数列{
}构成以
为首项,
为公差的等差数列,
即
=
?a
n=n•2
n-1.(7分)
(Ⅲ)由(Ⅱ)知a
n=n•2
n-1,
∴b
n=
=
=
(9分)
∴当n≥2,n∈N
*时
=
=
(
-
),
∴b
1+
+…+
=1+[(
-
)+(
-
)+(
-
)+…+(
-
)+(
-
)]
=1+
(
+
-
-
)<1+
(
+
)=
.
当n=1时,b
1=1<
,显然成立.
∴b
1+
+…+
<
.(12分)
点评:第(Ⅰ)题考查等差数列的证明,解题时要注意等差数列性质的合理运用;第(Ⅱ)题考查数列通项公式的求解方法,解题时要注意构造法的合理运用;第(Ⅲ)题考查数列前n项和的证明,解题时要注意裂项求和法的合理运用.