精英家教网 > 高中数学 > 题目详情

【题目】一次循环赛中有2n+1支参赛队,其中每队与其他队均只进行一场比赛,且比赛结果中没有平局。若三支参赛队A、B、C满足:A击败B,B击败C,C击败A,则称它们形成一个“环形三元组”。求:

(1)环形三元组的最小可能数目;

(2)环形三元组的最大可能数目。

【答案】(1)0;(2)

【解析】

(1)最小值为0.

对于比赛中的两支参赛队,当且仅当i>j时,有击败此时环形三元组数最小.

(2)任何三支参赛队要么组成一个环形三元组,要么组成一个“支配型”三元组(即某队击败了其余两队).设前者有c组,后者有d组.则

.

假设某队击败支其他队.则获胜组必在个支配型三元组中.

注意到,所有的比赛场次为

.

因此,.

由柯西不等式得

.

.

将所有参赛队排列在一个圆周上,对每支参赛队而言,在其顺时针方向的n支队被它击败,在其逆时方向的n支队均击败它时取到最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校有教师400人,对他们进行年龄状况和学历的调查,其结果如下:

学历

35岁以下

35-55

55岁及以上

本科

60

40

硕士

80

40

(1)若随机抽取一人,年龄是35岁以下的概率为,求

(2)在35-55岁年龄段的教师中,按学历状况用分层抽样的方法,抽取一个样本容量为5的样本,然后在这5名教师中任选2人,求两人中至多有1人的学历为本科的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现对某市工薪阶层关于楼市限购令的态度进行调查,随机抽调了50人,他们月收入的频数分布及对楼市限购令赞成人数如下表.

月收入(单位百元)

频数

5

10

15

10

5

5

赞成人数

4

8

12

5

2

1

(1)由以上统计数据填下面2×2列联表,并问是否有99%的把握认为月收入以5500元为分界点对楼市限购令的态度有差异;

月收入不低于55百元的人数

月收入低于55百元的人数

合计

赞成

a=______________

c=______________

______________

不赞成

b=______________

d=______________

______________

合计

______________

______________

______________

(2)试求从年收入位于(单位:百元)的区间段的被调查者中随机抽取2人,恰有1位是赞成者的概率。

参考公式:,其中.

参考值表:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上的偶函数,其图象关于点对称,且在区间上是单调函数,则的值是( )

A. B. C. D. 无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为(t为参数),它与曲线C(y2)2x21交于AB两点.

(1)|AB|的长;

(2)O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知ab表示两条直线,表示三个不重合的平面,给出下列命题:

①若,则

②若ab相交且都在外,,则

③若,则

④若,且,则

⑤若,则.

其中正确命题的序号是_____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形中,的中点,的交点,将沿翻折到图的位置,得到四棱锥

1)求证:

2)当时,求到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=lnx,其中a0.曲线y=fx)在点(1f1))处的切线与直线y=x+1垂直.

1)求函数fx)的单调区间;

2)求函数fx)在区间[1e]上的极值和最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,点在棱.

1)求证:平面平面

2)若直线平面,求此时直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案