本小题满分10分)
在△ABC中,A、B为锐角,角A、B、C所对的边分别为、
、
,且
,
。
(1)求角C的值;
(2)若a-b=-1,求
、
、
的值。
(1);(2)a=
,b=1,c=
。
解析试题分析:∵A、B为锐角,sinA=,sinB=
,
∴cosA==
,cosB=
=
,
∴cosC=-cos(A+B)=-(cosAcosB-sinAsinB)
=-(×
-
×
)=
.
∵0<C<π,∴C= ---------------5分
(2)由(1)知C=,∴sinC=
.
由正弦定理=
=
得
a=
b=
c,即a=
b,c=
b,
∵a-b=-1,∴
b-b=
-1,∴b=1,
∴a=,c=
. ---------------10分
考点:本题考查正弦定理;诱导公式;三角形内的隐含条件。
点评:熟练掌握公式及定理是解本题的关键.在解题过程中,要仔细计算,避免出现计算错误。
科目:高中数学 来源: 题型:解答题
(本小题满分12分)设锐角△ABC的三内角A,B,C的对边分别为 A,b,c,已知向量,
,且
∥
.
(1) 求角A的大小;
(2) 若,
,且△ABC的面积小于
,求角B的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知函数f(x)=" cos(" 2x+)+sin2x.
(Ⅰ)求函数f(x)的最小正周期和值域;
(Ⅱ)在△ABC中,角A、B、C的对边分别为a、b、c,满足
2·
=
, 求△ABC的面积S.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com