精英家教网 > 高中数学 > 题目详情
(满分12分)设函数
(Ⅰ)若在定义域内存在,而使得不等式能成立,求实数的最小值;
(Ⅱ)若函数在区间上恰有两个不同的零点,求实数的取值范围。
(Ⅰ)实数的最小值为。(Ⅱ)

试题分析:(Ⅰ)要使得不等式能成立,只需。  
求导得:,        ………3分
∵函数的定义域为
时,,∴函数在区间上是减函数;
时,,∴函数在区间(0,+∞)上是增函数。
,    ∴。故实数的最小值为。     ………6分
(Ⅱ)由得:

由题设可得:方程在区间上恰有两个相异实根………8分
。∵,列表如下:







 

0

 


减函数

增函数

 


从而有                 ………10分
画出函数在区间上的草图

易知要使方程在区间上恰有两个相异实根,
只需:,即:。      ………12分
点评:利用导数研究函数单调性、确定函数最值、研究函数图象,是导数的基本应用。本题将“恒成立”问题转化成求函数最值问题,将函数零点问题,转化成研究函数单调性、求最值问题,凸显转化与化归数学的重要性。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

设函数f (x)=x3-4xa,0<a<2.若f (x)的三个零点为x1x2x3,且x1x2x3,则
A.x1>-1B.x2<0C.x2>0D.x3>2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分12分)
已知函數f(x)=ln+mx2(m∈R)
(I)求函数f(x)的单调区间;
(II)若m=0,A(a,f(a))、B(b,f(b))是函数f(x)图象上不同的两点,且a>b>0, 为f(x)的导函数,求证:
(III)求证

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的大致图象是(   )

A、                 B、                  C、                 D、

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)已知处有极值,其图象在处的切线与直线平行.
(1)求函数的单调区间;
(2)若时,恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)
已知函数.
(1)当时,若函数在区间上是单调增函数,试求的取值范围;
(2)当时,直接写出(不需给出演算步骤)函数 ()的单调增区间;
(3)如果存在实数,使函数)在
 处取得最小值,试求实数的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知函数,其中.
(I)求函数的导函数的最小值;
(II)当时,求函数的单调区间及极值;
(III)若对任意的,函数满足,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的导函数的图象大致是(     )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)已知函数
(1)若函数上为增函数,求实数的取值范围;
(2)当时,求上的最大值和最小值;
(3)当时,求证对任意大于1的正整数恒成立.

查看答案和解析>>

同步练习册答案