精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=$\frac{2x}{x+1},x∈[{-3,-2}]$
(1)求证:f(x)在[-3,-2]上是增函数;
(2)求f(x)得最大值和最小值.

分析 (1)设x1<x2∈[-3,-2],作差判断f(x1)<f(x2),可得:f(x)在[-3,-2]上是增函数;
(2)结合(1)中函数的单调性,可得f(x)得最大值和最小值.

解答 解:(1)∵函数f(x)=$\frac{2x}{x+1},x∈[{-3,-2}]$
设x1<x2∈[-3,-2],
∴x1-x2<0,x1+1<0,x2+1<0,
∴$f({x}_{1})-f({x}_{2})=2-\frac{2}{{x}_{1}+1}-2+\frac{2}{{x}_{2}+1}=\frac{2({x}_{1}-{x}_{2})}{({x}_{1}+1)({x}_{2}+1)}$<0,
∴f(x1)<f(x2),
∴f(x)在[-3,-2]上是增函数;
(2)由(1)中f(x)在[-3,-2]上是增函数,
∴当x=-3时,f(x)min=f(-3)=3,
当x=-2时,f(x)max=f(-2)=4.

点评 本题考查的知识点是二次函数的图象和性质,函数单调性的判断与证明,函数的最值,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知$\overrightarrow{m}$=(2-sin(2x+$\frac{π}{6}$),-2),$\overrightarrow{n}$=(1,sin2x),f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,(x∈[0,$\frac{π}{2}$])
(1)求函数f(x)的值域;
(2)设△ABC的内角A,B,C的对边长分别为a,b,c,若f($\frac{B}{2}$)=1,b=1,c=$\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.等边△ABC的边长为a,过△ABC的中心O作OP⊥平面ABC且OP=$\frac{\sqrt{6}}{3}$a,则点P到△ABC的边BC的距离为$\frac{\sqrt{3}}{2}a$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.$\underset{lim}{n→∞}{a}_{n}$存在,且$\underset{lim}{n→∞}\frac{{a}_{n}+1}{{a}_{n}-1}$=3,则$\underset{lim}{n→∞}$an=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知椭圆方程为$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{2}=1$,过椭圆上一点P(2,1)作切线交y轴于N,过P的另一条直线交y轴于M,若△PMN是以MN为底边的等腰三角形,则直线PM的方程为(  )
A.y=$\frac{3}{2}x-2$B.y=$\frac{1}{2}x$C.y=-2x+5D.y=$\frac{2}{3}x-\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.用洛必达法则求下列极限:
(1)$\underset{lim}{x→0}$$\frac{1-cosx}{{x}^{2}}$
(2)$\underset{lim}{x→0}$$\frac{{e}^{x}-{e}^{-x}-2x}{x-sinx}$
(3)$\underset{lim}{x→{0}^{+}}\frac{lnsin3x}{lnsinx}$
(4)$\underset{lim}{x→0}(\frac{1}{x}-\frac{1}{{e}^{x}-1})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设a>0,b>0,c>0,a≠b,b≠c,c≠a,且a,b,c,d满足a+b>c,求证:a3+b3+c3+3abc>2(a+b)c2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数y=2cos2x-1的最小值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.一个球的体积是100cm3,试计算它的表面积(π取3.14,结果精确到1cm3,可用计算器).

查看答案和解析>>

同步练习册答案