精英家教网 > 高中数学 > 题目详情
19.△ABC中,AB=6,AC=8,若$\overrightarrow{DB}$$+\overrightarrow{DC}$=0,则$\overrightarrow{AD}$$•\overrightarrow{BC}$=14.

分析 以AC所在直线为x轴,以A为坐标原点建立平面直角坐标系,则B在以A为圆心,6为半径的圆上,设B(6cosθ,6sinθ),求出各向量的坐标,由$\overrightarrow{DB}$$+\overrightarrow{DC}$=0知D是BC的中点,故∴$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}+\overrightarrow{AC}$),用坐标解出$\overrightarrow{AD}$$•\overrightarrow{BC}$.

解答 解:以AC所在直线为x轴,以A为坐标原点建立平面直角坐标系,则A(0,0),C(8,0),
∵AB=6,∴B在以A为圆心,6为半径的圆上,设B(6cosθ,6sinθ),(θ≠0).
∴$\overrightarrow{AB}$=(6cosθ,6sinθ),$\overrightarrow{AC}$=(8,0),$\overrightarrow{BC}$=(8-6cosθ,-6sinθ),
∵$\overrightarrow{DB}$$+\overrightarrow{DC}$=0,∴D是BC的中点,
∴$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}+\overrightarrow{AC}$)=(3cosθ+4,3sinθ),
∴$\overrightarrow{AD}$$•\overrightarrow{BC}$=(3cosθ+4)(8-6cosθ)-18sin2θ=32-18cos2θ-18sin2θ=32-18=14.
故答案为:14.

点评 本题考查了平面向量的数量积运算,画出符合条件的图形,建立坐标系是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.求函数y=$\frac{x+5}{\sqrt{x-1}}$+(x+2)0的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,设$\overrightarrow{AB}$=(0,4),$\overrightarrow{AC}$=(2,k),且△ABC是直角三角形,则k的取值集合是{0,2,4}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知二次函数当x=-1时,有最大(小)值4,且它的图象过点(1,6),求这个二次函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若a>0且a≠1下列计算中正确的是(  )
A.a2×${a}^{\frac{1}{2}}$=aB.a2÷${a}^{\frac{1}{2}}$=aC.(-a)2=-a2D.${(a}^{2})^{\frac{1}{2}}$=a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.直线l过点A(1,2),且不过第四象限,那么直线l的斜率的取值范围是[0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若直线经过点A(-1,2),点B(3,2),则直线的斜率(  )
A.2B.-1C.0D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立直角坐标系,将曲线C1$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数)上所有点的横坐标、纵坐标分别伸长为原来的2和$\frac{1}{2}$后得到曲线C2
(1)求曲线C1的极坐标方程和曲线C2的普通方程;
(2)已知直线1:ρ(cosθ+2sinθ)=4,点P在曲线C2上,求点P到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求函数$y={sin^2}x+cosx+1,x∈[-\frac{π}{2},\frac{π}{2}]$的最大、小值,及取得最大、小值时x的取值集合.

查看答案和解析>>

同步练习册答案