分析 (1)先由割线定理得CA•CB=CF•CE,再由图中的等量关系,得CA•CB=2CB2=DC2=CF•CE,再通证明△CDE和△CFD相似,从而得出∠CFD=∠CDE=90°,即DF⊥CE;
(2)在等腰Rt△CDB中,CD=2$\sqrt{3}$,在Rt△DFC中,∠DCF=30°,在Rt△CDE中,求出CE=4,最后在△BCE中,利用余弦定理求出BE的值.
解答 (1)证明:如图所示,
∵CA与⊙O交于点B,CE与⊙O交于点F,
∴由割线定理,得CA•CB=CF•CE,
∵AB=BC=DB,DB⊥AC,
∴DA=DC=$\sqrt{2}$CB,∠CDB=∠ADB=45°,
∴△CDA是等腰直角三角形,即∠CDA=90°,
∴CA•CB=2CB2=DC2=CF•CE,即$\frac{DC}{CF}=\frac{CE}{DC}$
又∵∠DCE=∠DCF,∴△CDE∽△CFD,
∴∠CFD=∠CDE=90°,即DF⊥CE.
(2)解:在等腰Rt△CDB中,AB=BC=DB=$\sqrt{6}$
∴CD=2$\sqrt{3}$.
在Rt△DFC中,DF=$\sqrt{3}$,∴sin∠DCF=$\frac{1}{2}$,∴∠DCF=30°,
∴在Rt△CDE中,CE=4,
∵∠ECB=∠DCB-∠DCE=15°
∴cos∠ECB=cos15°=cos(45°-30°)=$\frac{\sqrt{6}+\sqrt{2}}{4}$
∴在△BCE中,BE2=BC2+CE2-2BC•CE•cos∠BCE=10-4$\sqrt{3}$,即BE=$\sqrt{10-4\sqrt{3}}$.
点评 本题主要考查圆中的垂直关系、割线定理、三角形相似、勾股定理、余弦定理等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{3}$ | B. | $2\sqrt{3}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{43}{2}$ | B. | $\frac{55}{2}$ | C. | $\frac{125}{6}$ | D. | 22 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com