精英家教网 > 高中数学 > 题目详情
函数f(x)=2sin(ωx+ϕ)的一段图象如图所示,
的值为( )

A.
B.-2
C.2
D.不确定
【答案】分析:通过函数的图象求出函数的周期T,然后求出ω,根据(,0)求出∅,得到函数的解析式,然后求出的值.
解答:解:由题意函数的周期是T=π,所以ω=2;图象经过(,0),所以0=2sin(2×+∅)所以∅=-
所以函数的解析式为:f(x)=2sin(2x-)所以=2sin(2×)=2×=
故选A
点评:本题是基础题,考查由三角函数的图象,求三角函数的解析式,求三角函数值的方法,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2sinωx(ω>0)在区间[-
π
3
π
4
]
上的最小值是-2,则ω的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=2sinωx(ω>0)在[-
3
3
]
上单调递增,则ω的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•盐城三模)已知函数f (x)=2sin(ωx+?)(ω>0)的部分图象如图所示,则ω=
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sinωxcosωx-2
3
sin2ωx+
3
(ω>0),直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1-x2|的最小值为
π
2

(I)求ω的值;
(II)求函数f(x)的单调增区间;
(III)若f(a)=
2
3
,求sin(
5
6
π-4a)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2sin(x-
π
3
)cosx.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)讨论f(x)在[0,
π
2
]的单调性.

查看答案和解析>>

同步练习册答案