精英家教网 > 高中数学 > 题目详情
已知函数f(x)=loga(1-x)+loga(x+3),0<a<1,若函数f(x)的最小值为-4,求a的值.
考点:对数的运算性质
专题:计算题,函数的性质及应用
分析:由题意,
1-x>0
x+3>0
,从而求出函数的定义域{x|-3<x<1},化简f(x)=loga(1-x)(x+3),由0<a<1可得f(-1)=loga4=-4,从而解a.
解答: 解:由题意,
1-x>0
x+3>0

解得,-3<x<1,
则f(x)=loga(1-x)+loga(x+3)
=loga(1-x)(x+3),
又∵0<a<1,
∴f(-1)=loga4=-4,
则a=
2
2
点评:本题考查了函数的定义域的求法及对数函数的单调性的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的定义域是[0,1],则函数f(x2)的定义域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C经过A(1,
3
),(
2
,-
2
),且圆心在直线y=x上,求圆C方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C的中心在原点,焦点在x轴上,离心率为
6
3
,并与直线y=x+2相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)如图,过圆D:x2+y2=4上任意一点P作椭圆C的两条切线m,n. 求证:m⊥n.

查看答案和解析>>

科目:高中数学 来源: 题型:

在下列区间中,函数f(x)=ex+4x-3的零点所在的区间为(  )
A、(
1
4
1
2
B、(-
1
4
,0)
C、(0,
1
4
D、(
1
2
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

构造如图所示的数表,规则如下:先排两个l作为第一层,然后在每一层的相邻两个数之间插入这两个数和的a倍得下一层,其中a∈(0,
1
3
),设第n层中有an个数,这an个数的和为Sn(n∈N*).
(I)求an
(Ⅱ)证明:
n
2
a1-1
S1
+
a2-1
S2
+…+
an-1
Sn
<(
2
a+1
)n
-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2x+3(x∈R),若|f(x)|<a的必要条件是|x+1|<b(a,b>0),则a,b之间的关系是(  )
A、b≥
a+1
2
B、b
a
2
C、a
b
2
D、a
b
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f是从数集a到b的一一映射,若a中有三个元素,则b的非空真子集的个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是学校从走读生中随机调查200名走读生早上上学所需时间(单位:分钟)样本的频率分布直方图.
(1)学校所有走读生早上上学所需要的平均时间约是多少分钟?
(2)根据调查,距离学校500米以内的走读生上学时间不超过10分钟,距离学校1000米以内的走读生上学时间不超过20分钟.那么,距离学校500米以内的走读生和距离学校1000米以上的走读生所占全校走读生的百分率各是多少?

查看答案和解析>>

同步练习册答案