·ÖÎö £¨1£©¶ÔÓÚº¯Êýf£¨x£©=x2-2ax+2=£¨x-a£©2+2-a2£¬¸ù¾Ý¶Ô³ÆÖᣬ·ÖÀàÌÖÂÛ¼´¿É£¬
£¨2£©£¨i£©¾ÝºÍгº¯ÊýµÄ¶¨Ò壬Áгö·½³Ì×飬¿ÉµÃp2£¬q2Ϊ·½³Ì$\sqrt{{x}^{2}-1}$+t=xµÄ¶þʵ¸ù£¬ÔÙÓɶþ´Î·½³Ìʵ¸ùµÄ·Ö²¼£¬¼´¿ÉµÃµ½ËùÇótµÄ·¶Î§
£¨ii£©ÓÉж¨Ò壬¼ÙÉèg£¨a£©Îª¡°ºÍгº¯Êý¡±£¬ÌÖÂÛp£¬qµÄ·¶Î§£¬Í¨¹ý·½³ÌµÄ½â¼´¿ÉÅжÏ
½â´ð ½â£º£¨1£©º¯Êýf£¨x£©=x2-2ax+2=£¨x-a£©2+2-a2£¬Æä¶Ô³ÆÖá·½³ÌΪx=a£¬
µ±a¡Ü$\frac{1}{3}$ʱ£¬f£¨x£©ÔÚ[$\frac{1}{3}$£¬3]Éϵ¥µ÷µÝÔö£¬Æä×îСֵΪg£¨a£©=f£¨$\frac{1}{3}$£©=$\frac{19}{9}$-$\frac{2a}{3}$£»
µ±$\frac{1}{3}$¡Üa¡Ü2ʱ£¬f£¨x£©ÔÚ[$\frac{1}{3}$£¬3]ÉϵÄ×îСֵΪg£¨a£©=f£¨a£©=2-a2£»
º¯Êýf£¨x£©=x2-2ax+2ÔÚ[$\frac{1}{3}$£¬3]ÉϵÄ×îСֵg£¨a£©=$\left\{\begin{array}{l}{\frac{19}{9}-\frac{2a}{3}£¬a¡Ü\frac{1}{3}}\\{2-{a}^{2}£¬\frac{1}{3}£¼a¡Ü2}\end{array}\right.$
£¨2£©£¨i£©¡ßy=$\sqrt{{x}^{2}-1}$+tÔÚ[1£¬+¡Þ£©µÝÔö£¬
Óɱպ¯ÊýµÄ¶¨ÒåÖª£¬¸Ãº¯ÊýÔÚ¶¨ÒåÓò[1£¬+¡Þ£©ÄÚ£¬
´æÔÚÇø¼ä[p£¬q]£¨p£¼q£©£¬Ê¹µÃ¸Ãº¯ÊýÔÚÇø¼ä[p£¬q]ÉϵÄÖµÓòΪ[p2£¬q2]£¬ËùÒÔp¡Ý1£¬${\;}_{\;}^{\;}$$\left\{\begin{array}{l}{\sqrt{{p}^{2}-1}+t={p}^{2}}\\{\sqrt{{q}^{2}-1}+t={q}^{2}}\end{array}\right.$£¬
¡àp2£¬q2Ϊ·½³Ì$\sqrt{{x}^{2}-1}$+t=xµÄ¶þʵ¸ù£¬
¼´·½³Ìx2-£¨2t+1£©x+t2+1=0ÔÚ[1£¬+¡Þ£©ÉÏ´æÔÚÁ½¸ö²»µÈµÄʵ¸ùÇÒx¡Ýtºã³ÉÁ¢£¬
Áîu£¨x£©=x2-£¨2t+1£©x+t2+1£¬
¡à$\left\{\begin{array}{l}{¡÷£¾0}\\{\frac{2t+1}{2}£¾1}\\{u£¨1£©¡Ý0}\\{t¡Ü1}\end{array}\right.$£¬¡à$\left\{\begin{array}{l}{t£¾\frac{3}{4}}\\{t£¾\frac{1}{2}}\\{£¨t-1£©^{2}¡Ý0}\\{t¡Ü1}\end{array}\right.$£¬
½âµÃ$\frac{3}{4}$£¼t¡Ü1
¡àʵÊýtµÄÈ¡Öµ·¶Î§£¨$\frac{3}{4}$£¬1]£®
£¨ii£©¶ÔÓÚ£¨1£©£¬Ò×Öªg£¨a£©ÔÚ£¨-¡Þ£¬2]ÉÏΪ¼õº¯Êý£¬
¢ÙÈôp£¼q¡Ü$\frac{1}{3}$£¬g£¨a£©µÝ¼õ£¬Èôg£¨a£©Îª¡°±Õº¯Êý¡±£¬
Ôò$\left\{\begin{array}{l}{\frac{19}{9}-\frac{2p}{3}={q}^{2}}\\{\frac{19}{9}-\frac{2q}{3}={p}^{2}}\end{array}\right.$£¬
Á½Ê½Ïà¼õµÃp+q=$\frac{2}{3}$£¬ÕâÓëp£¼q¡Ü$\frac{1}{3}$ì¶Ü£®
¢Ú$\frac{1}{3}$£¼p£¼q¡Ü2ʱ£¬Èôg£¨a£©Îª¡°±Õº¯Êý¡±£¬Ôò$\left\{\begin{array}{l}{2-{p}^{2}={q}^{2}}\\{2-{q}^{2}={p}^{2}}\end{array}\right.$
´Ëʱp2+q2=2Âú×ãÌõ¼þµÄp£¬q´æÔÚ£¬
¡à$\frac{1}{3}$£¼p£¼q¡Ü2ʱ£¬Ê¹µÃg£¨a£©Îª¡°±Õº¯Êý¡±p£¬q´æÔÚ£¬
¢Ûp¡Ü$\frac{1}{3}$£¼q¡Ü2ʱ£¬Èôg£¨a£©Îª¡°±Õº¯Êý¡±£¬Ôò$\left\{\begin{array}{l}{\frac{19}{9}-\frac{2p}{3}={q}^{2}}\\{2-{q}^{2}={p}^{2}}\end{array}\right.$£¬
ÏûÈ¥qµÃ9p2-6p+1=0£¬¼´£¨3p-1£©2=0
½âµÃp=$\frac{1}{3}$´Ëʱ£¬q=$\frac{\sqrt{17}}{3}$£¼2£¬ÇÒp2+q2=2
¡àp=$\frac{1}{3}$£¼q¡Ü2ʱ£¬Ê¹µÃg£¨a£©Îª¡°±Õº¯Êý¡±p£¬q´æÔÚ£¬
×ÛÉÏËùÊö£¬µ±p£¬qÂú×ã$\left\{\begin{array}{l}{\frac{1}{3}¡Üp£¼q¡Ü2}\\{{p}^{2}+{q}^{2}=2}\end{array}\right.$ʱ£¬g£¨a£©Îª¡°±Õº¯Êý¡±
µãÆÀ ±¾Ì⿼²éж¨ÒåÌ⣬¹Ø¼üÊÇÀí½âÌâÖеÄж¨Ò壬´ËÌâÐÍÊǽü¼¸Äê¸ß¿¼³£¿¼ÌâÐÍ£®Çó·Ö¶Îº¯ÊýµÄº¯ÊýÖµ¹Ø¼üÊÇÅжϳö×Ô±äÁ¿ËùÊôµÄ·¶Î§£®
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 5 | B£® | $\frac{1}{2}$ | C£® | 2 | D£® | 1 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | ¢Ù | B£® | ¢Ú | C£® | ¢Û | D£® | ¢Ü |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com