14£®ÒÑÖª¹ØÓÚxµÄº¯Êýf£¨x£©=x2-2ax+2£®
£¨1£©µ±a¡Ü2ʱ£¬Çóf£¨x£©ÔÚ[$\frac{1}{3}$£¬3]ÉϵÄ×îСֵg£¨a£©£»
£¨2£©Èç¹ûº¯Êýf£¨x£©Í¬Ê±Âú×㣺
        ¢Ùº¯ÊýÔÚÕû¸ö¶¨ÒåÓòÉÏÊǵ¥µ÷Ôöº¯Êý»òµ¥µ÷¼õº¯Êý£»
        ¢ÚÔÚº¯ÊýµÄ¶¨ÒåÓòÄÚ´æÔÚÇø¼ä[p£¬q]£¬Ê¹µÃº¯ÊýÔÚÇø¼ä[p£¬q]ÉϵÄÖµÓòΪ[p2£¬q2]£®ÔòÎÒÃdzƺ¯Êýf£¨x£©ÊǸö¨ÒåÓòÉϵġ°±Õº¯Êý¡±£®
£¨i£©Èô¹ØÓÚxµÄº¯Êýy=$\sqrt{{x}^{2}-1}$+t£¨x¡Ý1£©ÊÇ¡°±Õº¯Êý¡±£¬ÇóʵÊýtµÄÈ¡Öµ·¶Î§£»
£¨ii£©Åжϣ¨1£©ÖÐg£¨a£©ÊÇ·ñΪ¡°±Õº¯Êý¡±£¿ÈôÊÇ£¬Çó³öp£¬qµÄÖµ»ò¹Øϵʽ£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©¶ÔÓÚº¯Êýf£¨x£©=x2-2ax+2=£¨x-a£©2+2-a2£¬¸ù¾Ý¶Ô³ÆÖᣬ·ÖÀàÌÖÂÛ¼´¿É£¬
£¨2£©£¨i£©¾ÝºÍгº¯ÊýµÄ¶¨Ò壬Áгö·½³Ì×飬¿ÉµÃp2£¬q2Ϊ·½³Ì$\sqrt{{x}^{2}-1}$+t=xµÄ¶þʵ¸ù£¬ÔÙÓɶþ´Î·½³Ìʵ¸ùµÄ·Ö²¼£¬¼´¿ÉµÃµ½ËùÇótµÄ·¶Î§
£¨ii£©ÓÉж¨Ò壬¼ÙÉèg£¨a£©Îª¡°ºÍгº¯Êý¡±£¬ÌÖÂÛp£¬qµÄ·¶Î§£¬Í¨¹ý·½³ÌµÄ½â¼´¿ÉÅжÏ

½â´ð ½â£º£¨1£©º¯Êýf£¨x£©=x2-2ax+2=£¨x-a£©2+2-a2£¬Æä¶Ô³ÆÖá·½³ÌΪx=a£¬
µ±a¡Ü$\frac{1}{3}$ʱ£¬f£¨x£©ÔÚ[$\frac{1}{3}$£¬3]Éϵ¥µ÷µÝÔö£¬Æä×îСֵΪg£¨a£©=f£¨$\frac{1}{3}$£©=$\frac{19}{9}$-$\frac{2a}{3}$£»
µ±$\frac{1}{3}$¡Üa¡Ü2ʱ£¬f£¨x£©ÔÚ[$\frac{1}{3}$£¬3]ÉϵÄ×îСֵΪg£¨a£©=f£¨a£©=2-a2£»
º¯Êýf£¨x£©=x2-2ax+2ÔÚ[$\frac{1}{3}$£¬3]ÉϵÄ×îСֵg£¨a£©=$\left\{\begin{array}{l}{\frac{19}{9}-\frac{2a}{3}£¬a¡Ü\frac{1}{3}}\\{2-{a}^{2}£¬\frac{1}{3}£¼a¡Ü2}\end{array}\right.$
£¨2£©£¨i£©¡ßy=$\sqrt{{x}^{2}-1}$+tÔÚ[1£¬+¡Þ£©µÝÔö£¬
Óɱպ¯ÊýµÄ¶¨ÒåÖª£¬¸Ãº¯ÊýÔÚ¶¨ÒåÓò[1£¬+¡Þ£©ÄÚ£¬
´æÔÚÇø¼ä[p£¬q]£¨p£¼q£©£¬Ê¹µÃ¸Ãº¯ÊýÔÚÇø¼ä[p£¬q]ÉϵÄÖµÓòΪ[p2£¬q2]£¬ËùÒÔp¡Ý1£¬${\;}_{\;}^{\;}$$\left\{\begin{array}{l}{\sqrt{{p}^{2}-1}+t={p}^{2}}\\{\sqrt{{q}^{2}-1}+t={q}^{2}}\end{array}\right.$£¬
¡àp2£¬q2Ϊ·½³Ì$\sqrt{{x}^{2}-1}$+t=xµÄ¶þʵ¸ù£¬
¼´·½³Ìx2-£¨2t+1£©x+t2+1=0ÔÚ[1£¬+¡Þ£©ÉÏ´æÔÚÁ½¸ö²»µÈµÄʵ¸ùÇÒx¡Ýtºã³ÉÁ¢£¬
Áîu£¨x£©=x2-£¨2t+1£©x+t2+1£¬
¡à$\left\{\begin{array}{l}{¡÷£¾0}\\{\frac{2t+1}{2}£¾1}\\{u£¨1£©¡Ý0}\\{t¡Ü1}\end{array}\right.$£¬¡à$\left\{\begin{array}{l}{t£¾\frac{3}{4}}\\{t£¾\frac{1}{2}}\\{£¨t-1£©^{2}¡Ý0}\\{t¡Ü1}\end{array}\right.$£¬
½âµÃ$\frac{3}{4}$£¼t¡Ü1
¡àʵÊýtµÄÈ¡Öµ·¶Î§£¨$\frac{3}{4}$£¬1]£®
£¨ii£©¶ÔÓÚ£¨1£©£¬Ò×Öªg£¨a£©ÔÚ£¨-¡Þ£¬2]ÉÏΪ¼õº¯Êý£¬
¢ÙÈôp£¼q¡Ü$\frac{1}{3}$£¬g£¨a£©µÝ¼õ£¬Èôg£¨a£©Îª¡°±Õº¯Êý¡±£¬
Ôò$\left\{\begin{array}{l}{\frac{19}{9}-\frac{2p}{3}={q}^{2}}\\{\frac{19}{9}-\frac{2q}{3}={p}^{2}}\end{array}\right.$£¬
Á½Ê½Ïà¼õµÃp+q=$\frac{2}{3}$£¬ÕâÓëp£¼q¡Ü$\frac{1}{3}$ì¶Ü£®
¢Ú$\frac{1}{3}$£¼p£¼q¡Ü2ʱ£¬Èôg£¨a£©Îª¡°±Õº¯Êý¡±£¬Ôò$\left\{\begin{array}{l}{2-{p}^{2}={q}^{2}}\\{2-{q}^{2}={p}^{2}}\end{array}\right.$
´Ëʱp2+q2=2Âú×ãÌõ¼þµÄp£¬q´æÔÚ£¬
¡à$\frac{1}{3}$£¼p£¼q¡Ü2ʱ£¬Ê¹µÃg£¨a£©Îª¡°±Õº¯Êý¡±p£¬q´æÔÚ£¬
¢Ûp¡Ü$\frac{1}{3}$£¼q¡Ü2ʱ£¬Èôg£¨a£©Îª¡°±Õº¯Êý¡±£¬Ôò$\left\{\begin{array}{l}{\frac{19}{9}-\frac{2p}{3}={q}^{2}}\\{2-{q}^{2}={p}^{2}}\end{array}\right.$£¬
ÏûÈ¥qµÃ9p2-6p+1=0£¬¼´£¨3p-1£©2=0
½âµÃp=$\frac{1}{3}$´Ëʱ£¬q=$\frac{\sqrt{17}}{3}$£¼2£¬ÇÒp2+q2=2
¡àp=$\frac{1}{3}$£¼q¡Ü2ʱ£¬Ê¹µÃg£¨a£©Îª¡°±Õº¯Êý¡±p£¬q´æÔÚ£¬
×ÛÉÏËùÊö£¬µ±p£¬qÂú×ã$\left\{\begin{array}{l}{\frac{1}{3}¡Üp£¼q¡Ü2}\\{{p}^{2}+{q}^{2}=2}\end{array}\right.$ʱ£¬g£¨a£©Îª¡°±Õº¯Êý¡±

µãÆÀ ±¾Ì⿼²éж¨ÒåÌ⣬¹Ø¼üÊÇÀí½âÌâÖеÄж¨Ò壬´ËÌâÐÍÊǽü¼¸Äê¸ß¿¼³£¿¼ÌâÐÍ£®Çó·Ö¶Îº¯ÊýµÄº¯ÊýÖµ¹Ø¼üÊÇÅжϳö×Ô±äÁ¿ËùÊôµÄ·¶Î§£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑ֪ƽÃæÖ±½Ç×ø±êϵxoyÖУ¬µãP£¨1£¬0£©£¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2cos¦Õ\\ y=sin¦Õ\end{array}\right.$£¨¦ÕΪ²ÎÊý£©£®ÒÔÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Çãб½ÇΪ¦ÁµÄÖ±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨¦Á-¦È£©=sin¦Á£®
£¨1£©ÇóÇúÏßCµÄÆÕͨ·½³ÌºÍÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÈôÇúÏßCÓëÖ±Ïßl½»ÓÚM£¬NÁ½µã£¬ÇÒ$|{\frac{1}{{|{PM}|}}-\frac{1}{{|{PN}|}}}|=\frac{1}{3}$£¬Çó¦ÁµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªa£¾0£¬x£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{x¡Ý1}\\{x+y¡Ü3}\\{y¡Ýa£¨x-2£©}\end{array}\right.$£¬Èôz=2x+yµÄ×î´óֵΪ$\frac{11}{2}$£¬Ôòa=£¨¡¡¡¡£©
A£®5B£®$\frac{1}{2}$C£®2D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®º¯Êýy=3cos£¨2x+$\frac{¦Ð}{6}$£©µÄ×îСÕýÖÜÆÚΪ¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖªP£¨x0£¬y0£©Êǵ¥Î»Ô²ÉÏÈÎÒ»µã£¬½«ÉäÏßOPÈƵãO˳ʱÕëת$\frac{¦Ð}{3}$µ½OQ½»µ¥Î»Ô²ÓëµãQ£¨x1£¬y1£©£¬Èômy0-y1µÄ×î´óֵΪ$\frac{3}{2}$£¬ÔòʵÊým=$\frac{1¡À\sqrt{6}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®´Ó1£¬2£¬3£¬4£¬5£¬6Õâ6¸öÊý×ÖÖÐÈÎÈ¡Èý¸öÊý×Ö£¬ÆäÖУº¢ÙÖÁÉÙÓÐÒ»¸öżÊýÓ붼ÊÇżÊý£»¢ÚÖÁÉÙÓÐÒ»¸öżÊýÓ붼ÊÇÆæÊý£»¢ÛÖÁÉÙÓÐÒ»¸öżÊýÓëÖÁÉÙÓÐÒ»¸öÆæÊý£»¢ÜÇ¡ÓÐÒ»¸öżÊýÓëÇ¡ÓÐÁ½¸öżÊý£®ÉÏÊöʼþÖУ¬ÊÇ»¥³âµ«²»¶ÔÁ¢µÄʼþÊÇ£¨¡¡¡¡£©
A£®¢ÙB£®¢ÚC£®¢ÛD£®¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=-x3£¨x£¾0£©£¬Èôf£¨m£©-$\frac{1}{2}$m2¡Üf£¨1-m£©-$\frac{1}{2}$£¨1-m£©2£¬ÔòmµÄÈ¡Öµ·¶Î§Îª[$\frac{1}{2}$£¬1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬×ó£¬ÓÒ½¹µã·Ö±ðÊÇF1£¬F2£¬ÒÔF1ΪԲÐÄÒÔ3Ϊ°ë¾¶µÄÔ²ÓëÒÔF2ΪԲÐÄÒÔ1Ϊ°ë¾¶µÄÔ²Ïཻ£¬ÇÒ½»µãÔÚÍÖÔ²CÉÏ£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©Ï߶ÎPQÊÇÍÖÔ²C¹ýµãF2µÄÏÒ£¬ÇÒ$\overrightarrow{P{F}_{2}}$=¦Ë$\overrightarrow{{F}_{2}Q}$£®
£¨i£©Çó¡÷PF1QµÄÖܳ¤£»
£¨ii£©Çó¡÷PF1QÄÚÇÐÔ²Ãæ»ýµÄ×î´óÖµ£¬²¢ÇóÈ¡µÃ×î´óֵʱʵÊý¦ËµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖª¼¯ºÏA={x|1£¼x£¼3}£¬¼¯ºÏB={x|2m£¼x£¼1-m}£®
£¨1£©Èôm=-1ÇóA¡ÉB£»
£¨2£©ÈôA¡ÉB=∅£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸