¸ø³öÏÂÁÐÎå¸ö½áÂÛÆäÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
¢ÙÈôʵÊýx£¬yÂú×㣨x-2£©2+y2=3£¬Ôò
y
x
µÄ×î´óֵΪ
3
£»¢ÚÍÖÔ²
x2
4
+
y2
3
=1
ÓëÍÖÔ²
x2
2
+
2y2
3
=1
ÓÐÏàͬµÄÀëÐÄÂÊ£»¢ÛË«ÇúÏß
x2
2-k
+
y2
3-k
=1
µÄ½¹µã×ø±êÊÇ£¨1£¬0£©£¬£¨-1£¬0£©¢ÜÔ²x2+y2=1ÓëÖ±Ïßy=kx+2ûÓР¹«¹²µãµÄ³äÒªÌõ¼þÊÇk¡Ê(-
3
£¬
3
)
¢ÝÉèa£¾1£¬ÔòË«ÇúÏß
x2
a2
-
y2
(a+1)2
=1
µÄÀëÐÄÂÊeµÄÈ¡Öµ·¶Î§ÊÇ(
2
£¬
5
)
£®
·ÖÎö£º¸ù¾ÝԲ׶ÇúÏßµÄÐÔÖÊÖðÒ»Åжϣ¬¢ÙÓ¦ÓÃбÂʵļ¸ºÎÒâÒ壬°Ñ
y
x
¿´³Éµã£¨x£¬y£©Óëµã£¨0£¬0£©Á¬ÏßµÄбÂÊ£¬¼´¿Éͨ¹ýÇóÔ²µÄÇÐÏßбÂÊÀ´¼ÆË㣻¢ÚÍÖÔ²µÄÀëÐÄÂÊe=
c
a
£¬ËùÒÔÒªÅжÏÁ½¸öÍÖÔ²µÄÀëÐÄÂÊÊÇ·ñÏàͬ£¬Ö»ÐèÇó³öÁ½¸öÍÖÔ²ÖеÄa£¬cµÄÖµ£»¢ÛÒªÇóË«ÇúÏߵĽ¹µã×ø±ê£¬±ØÐëÇó³öcµÄÖµÒÔ¼°½¹µãËùÔÚ×ø±êÖ᣻¢ÜÖ±ÏßÓëÔ²ÈôûÓй«¹²µã£¬ÕâÖ±ÏßÓëÔ²ÏàÀ룬ԲÐĵ½Ö±ÏߵľàÀë´óÓڰ뾶£»¢ÝÒªÇóÀëÐÄÂʵķ¶Î§£¬Ö»ÐèÓú¬²ÎÊýaµÄʽ×Ó±íʾÀëÐÄÂÊ£¬ÔÙ¸ù¾ÝaµÄ·¶Î§Çó³öeµÄ·¶Î§£®
½â´ð£º½â£º¢Ù
y
x
=
y-0
x-0
£¬¿É¿´³Éµã£¨x£¬y£©Óëµã£¨0£¬0£©Á¬ÏßµÄбÂÊ£¬Ò²¼´Ô²£¨x-2£©2+y2=3ÉϵãÓë×ø±êÔ­µãÁ¬ÏßµÄбÂÊ£®
¡à
y
x
µÄ×îÖµ¼´Îª¹ýÔ­µãµÄÖ±ÏßÓëÔ²ÏàÇÐʱ¸ÃÖ±ÏßµÄбÂÊ£¬Éè¹ýÔ­µãµÄÔ²µÄÇÐÏß·½³ÌΪy=kx£¬¼´kx-y=0£¬
Ô²£¨x-2£©2+y2=3µÄÔ²ÐÄ£¨2£¬0£©µ½Ö±Ïßkx-y=0µÄ¾àÀë
|2k|
k2+1
=
3
£¬½âµÃk=¡À
3
£¬¡à
y
x
µÄ×î´óֵΪ
3
£¬¡à¢ÙÕýÈ·£®
¢ÚÍÖÔ²
x2
4
+
y2
3
=1
ÖÐa=2£¬c=1£¬¡àÀëÐÄÂÊΪ
1
2
£¬ÍÖÔ²
x2
2
+
2y2
3
=1
ÖÐa=
2
£¬c=
2
2
£¬¡àÀëÐÄÂÊΪ
1
2
£¬¡à¢ÚÕýÈ·£®
¢Û¡ßË«ÇúÏß·½³ÌΪ
x2
2-k
+
y2
3-k
=1
£¬¡à£¨2-k£©£¨3-k£©£¼0£¬¡à2£¼k£¼3£¬¡à2-k£¼0.3-k£¾0£¬¡àË«ÇúÏߵĽ¹µãÔÚyÖáÉÏ£¬
ÇÒc2=3-k+k-2=1£¬¡àc=1£¬¡à½¹µã×ø±êΪ£¨0£¬¡À1£©£¬¡à¢Û´íÎó£®
¢ÜÈôÔ²x2+y2=1ÓëÖ±Ïßy=kx+2ûÓй«¹²µã£¬ÔòÔ²Ðĵ½Ö±ÏߵľàÀë´óÓڰ뾶£¬¼´
2
k2+1
£¾1£¬½âµÃ£¬-
3
£¼k£¼
3
£¬Èô-
3
£¼k£¼
3
£¬ÔòÔ²Ðĵ½Ö±ÏߵľàÀë´óÓڰ뾶£¬¡àÔ²ÓëÖ±ÏßÎÞ¹«¹²µã£¬¡àÔ²x2+y2=1ÓëÖ±Ïßy=kx+2ûÓР¹«¹²µãµÄ³äÒªÌõ¼þÊÇk¡Ê(-
3
£¬
3
)
£¬¡à¢ÜÕýÈ·£®
¢Ý¡ßË«ÇúÏß·½³ÌΪ
x2
a2
-
y2
(a+1)2
=1
£¬¡àc2=a2+£¨a+1£©2£¬
¡àe2=
c2
a2
=
a2+(a+1)2
a2
=(
1
a
)
2
+
2
a
+2=(
1
a
+1)
2
+1£¬¡ßa£¾1£¬¡à0£¼
1
a
£¼1£¬
¡à2£¼e2£¼5£¬¡à
2
£¼e£¼
5
¡à¢ÝÕýÈ·£®
¹ÊÑ¡D
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éԲ׶ÇúÏßµÄһЩÐÔÖÊ£¬ÒòΪÊǶàÑ¡Ì⣬ֻÐèÖð¸öÅжϼ´¿É£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐÎå¸ö½áÂÛ£º
¢Ùº¯Êýy=2sin(2x-
¦Ð
3
)
ÓÐÒ»Ìõ¶Ô³ÆÖáÊÇx=
5¦Ð
12
£»
¢Úº¯Êýy=tanxµÄͼÏó¹ØÓڵ㣨
¦Ð
2
£¬0£©¶Ô³Æ£»
¢ÛÕýÏÒº¯ÊýÔÚµÚÒ»ÏóÏÞΪÔöº¯Êý£»
¢ÜÒªµÃµ½y=3sin(2x+
¦Ð
4
)
µÄͼÏó£¬Ö»Ð轫y=3sin2xµÄͼÏó×óÒÆ
¦Ð
4
¸öµ¥Î»£»
¢ÝÈôsin(2x1-
¦Ð
4
)=sin(2x2-
¦Ð
4
)
£¬Ôòx1-x2=k¦Ð£¬ÆäÖÐk¡ÊZ£»
ÆäÖÐÕýÈ·µÄÓÐ
¢Ù¢Ú
¢Ù¢Ú
£®£¨ÌîдÕýÈ·½áÂÛÇ°ÃæµÄÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºµ¥Ñ¡Ìâ

¸ø³öÏÂÁÐÎå¸ö½áÂÛÆäÖÐÕýÈ·µÄÊÇ
¢ÙÈôʵÊýx£¬yÂú×㣨x-2£©2+y2=3£¬ÔòÊýѧ¹«Ê½µÄ×î´óֵΪÊýѧ¹«Ê½£»¢ÚÍÖÔ²Êýѧ¹«Ê½ÓëÍÖÔ²Êýѧ¹«Ê½ÓÐÏàͬµÄÀëÐÄÂÊ£»¢ÛË«ÇúÏßÊýѧ¹«Ê½µÄ½¹µã×ø±êÊÇ£¨1£¬0£©£¬£¨-1£¬0£©¢ÜÔ²x2+y2=1ÓëÖ±Ïßy=kx+2ûÓÐ ¹«¹²µãµÄ³äÒªÌõ¼þÊÇÊýѧ¹«Ê½¢ÝÉèa£¾1£¬ÔòË«ÇúÏßÊýѧ¹«Ê½µÄÀëÐÄÂÊeµÄÈ¡Öµ·¶Î§ÊÇÊýѧ¹«Ê½£®


  1. A.
    ¢Ù¢Ú¢Û
  2. B.
    ¢Ú¢Û¢Ü
  3. C.
    ¢Ù¢Ú¢Û¢Ý
  4. D.
    ¢Ù¢Ú¢Ü¢Ý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºµ¥Ñ¡Ìâ

¸ø³öÏÂÁÐÎå¸ö½áÂÛÆäÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
¢ÙÈôʵÊýx£¬yÂú×㣨x-2£©2+y2=3£¬Ôò
y
x
µÄ×î´óֵΪ
3
£»¢ÚÍÖÔ²
x2
4
+
y2
3
=1
ÓëÍÖÔ²
x2
2
+
2y2
3
=1
ÓÐÏàͬµÄÀëÐÄÂÊ£»¢ÛË«ÇúÏß
x2
2-k
+
y2
3-k
=1
µÄ½¹µã×ø±êÊÇ£¨1£¬0£©£¬£¨-1£¬0£©¢ÜÔ²x2+y2=1ÓëÖ±Ïßy=kx+2ûÓР¹«¹²µãµÄ³äÒªÌõ¼þÊÇk¡Ê(-
3
£¬
3
)
¢ÝÉèa£¾1£¬ÔòË«ÇúÏß
x2
a2
-
y2
(a+1)2
=1
µÄÀëÐÄÂÊeµÄÈ¡Öµ·¶Î§ÊÇ(
2
£¬
5
)
£®
A£®¢Ù¢Ú¢ÛB£®¢Ú¢Û¢ÜC£®¢Ù¢Ú¢Û¢ÝD£®¢Ù¢Ú¢Ü¢Ý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2009-2010ѧÄê±±¾©´óѧ¸½ÖиßÈý£¨ÉÏ£©ÊýѧÁ·Ï°ÊÔ¾í9£¨Àí¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

¸ø³öÏÂÁÐÎå¸ö½áÂÛÆäÖÐÕýÈ·µÄÊÇ£¨ £©
¢ÙÈôʵÊýx£¬yÂú×㣨x-2£©2+y2=3£¬ÔòµÄ×î´óֵΪ£»¢ÚÍÖÔ²ÓëÍÖÔ²ÓÐÏàͬµÄÀëÐÄÂÊ£»¢ÛË«ÇúÏߵĽ¹µã×ø±êÊÇ£¨1£¬0£©£¬£¨-1£¬0£©¢ÜÔ²x2+y2=1ÓëÖ±Ïßy=kx+2ûÓР¹«¹²µãµÄ³äÒªÌõ¼þÊÇ¢ÝÉèa£¾1£¬ÔòË«ÇúÏßµÄÀëÐÄÂÊeµÄÈ¡Öµ·¶Î§ÊÇ£®
A£®¢Ù¢Ú¢Û
B£®¢Ú¢Û¢Ü
C£®¢Ù¢Ú¢Û¢Ý
D£®¢Ù¢Ú¢Ü¢Ý

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸