精英家教网 > 高中数学 > 题目详情
19.如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°,E,F分别为PA,BD的中点,PA=PD=AD=2.
(1)证明:EF∥平面PBC;
(2)若$PB=\sqrt{6}$,求二面角E-DF-A的正弦值.

分析 (1)连接AC,推导出EF∥PC,由此能证明EF∥平面PBC.
(2)取AD中点O,连接OB,OP,分别以OA,OB,OP所在直线为x轴,y轴,z轴建立空间直角坐标系O-xyz,利用向量法能求出二面角E-DF-A的正弦值.

解答 证明:(1)连接AC,因为四边形ABCD是菱形,F为BD中点,所以F为AC中点.
又因为E为PA中点,所以EF∥PC,
又EF?平面PBC,PC?平面PBC,
所以EF∥平面PBC. …(5分)
解:(2)取AD中点O,连接OB,OP,
因为PA=PD,所以PO⊥AD,
因为菱形ABCD中,AB=AD,∠BAD=60°,所以△ABD是等边三角形,所以BO⊥AD,
由已知$BO=\sqrt{3},PO=\sqrt{3}$,若$PB=\sqrt{6}$,由BO2+PO2=PB2得PO⊥BO.
如图,分别以OA,OB,OP所在直线为x轴,y轴,z轴建立空间直角坐标系O-xyz,
由题意得A(1,0,0),B(0,$\sqrt{3}$,0),D(-1,0,0),P(0,0,$\sqrt{3}$),E($\frac{1}{2},0,\frac{\sqrt{3}}{2}$),F(-$\frac{1}{2},\frac{\sqrt{3}}{2}$,0),
$\overrightarrow{DE}$=($\frac{3}{2},0,\frac{\sqrt{3}}{2}$),$\overrightarrow{DF}$=($\frac{1}{2},\frac{\sqrt{3}}{2}$,0),设平面DEF的一个法向量为$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DE}=\frac{3}{2}x+\frac{\sqrt{3}}{2}z=0}\\{\overrightarrow{n}•\overrightarrow{DF}=\frac{1}{2}x+\frac{\sqrt{3}}{2}y=0}\end{array}\right.$,取y=1,得$\overrightarrow{n}$=(-$\sqrt{3},1,3$),
又因为平面ABD的法向量$\overrightarrow{OP}=(0,0,\sqrt{3})$,
所以cos<$\overrightarrow{n},\overrightarrow{OP}$>=$\frac{\overrightarrow{n}•\overrightarrow{OP}}{|\overrightarrow{n}|•|\overrightarrow{OP}|}$=$\frac{3\sqrt{13}}{13}$,故sin<$\overrightarrow{n},\overrightarrow{OP}$>=$\frac{2\sqrt{13}}{13}$,
即二面角E-DF-A的正弦值为$\frac{2\sqrt{13}}{13}$. …(12分)

点评 本题考查空间位置关系的判断与证明,考查二面角的求法,考查空间想象能力、推理论证能力和运算求解能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.函数f(x)=x3+x-3x的其中一个零点所在区间为(  )
A.$({0,\frac{1}{2}})$B.$({\frac{1}{2},1})$C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知sinx+cosx=$\frac{1}{3}$,且x是第二象限角.
求(1)sinx-cosx
(2)sin3x-cos3x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如果函数f(x)满足:在定义域D内存在x0,使得对于给定常数t,有f(x0+t)=f(x0)•f(t)成立,则称f(x)为其定义域上的t级分配函数.研究下列问题:
(1)判断函数f(x)=2x和g(x)=$\frac{2}{x}$是否为1级分配函数?说明理由;
(2)问函数φ(x)=)$\sqrt{\frac{a}{{x}^{2}+1}}$(a>0)能否成为2级分配函数,若能,则求出参数a的取值范围;若不能请说明理由;
(3)讨论是否存在实数a,使得对任意常数t(t∈R)函数φ(x)=$\sqrt{\frac{a}{{x}^{2}+1}}$(a>0)都是其定义域上的t级分配函数,若存在,求出参数a的取值范围,若不能请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某同学用五点法画函数f(x)=Asin(ωx+φ),(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如表:
ωx+φ0$\frac{π}{2}$π$\frac{3x}{2}$
x$\frac{π}{3}$$\frac{5π}{6}$
Asin(ωx+φ)05-50
(1)请将上表数据补充完整,并直接写出函数f(x)的解析式f(x)=5sin(2x-$\frac{π}{6}$);
(2)若函数f(x)的图象向左平移$\frac{π}{6}$个单位后对应的函数为g(x),求g(x)的图象离原点最近的对称中心(-$\frac{π}{12}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.sin20°sin50°-cos160°sin40°的值为(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,四棱锥P-ABCD的底面是平行四边形,BA=BD=$\sqrt{2}$,AD=2,PA=PD=$\sqrt{5}$,E,F分别是棱AD,PC的中点.
(Ⅰ)证明 AD⊥平面PBE;
(Ⅱ)若二面角P-AD-B为60°,求直线EF与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,已知$cosA=\frac{3}{5},cosB=\frac{5}{13}$,AC=3,则AB=$\frac{14}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设等差数列{an}的前n项和为Sn,a22=37,S22=352.
(1)求数列{an}的通项公式;
(2)若bn=$\frac{1}{{a}_{n+3}•{a}_{n+4}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案