精英家教网 > 高中数学 > 题目详情
1.如图是函数f(x)=cos(πx+φ)(0<φ<$\frac{π}{2}$)的部分图象,则f(3x0)=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

分析 f(x)=cos(πx+φ),又图象过点(0,$\frac{\sqrt{3}}{2}$),结合范围0≤φ<$\frac{π}{2}$,可得:φ=$\frac{π}{6}$,由图象可得:πx0+$\frac{π}{6}$=2π-$\frac{π}{6}$,即可解得x0的值,即可得出结论.

解答 解:∵f(x)=cos(πx+φ)的图象过点(0,$\frac{\sqrt{3}}{2}$),
∴$\frac{\sqrt{3}}{2}$=cosφ,
∴结合范围0≤φ<$\frac{π}{2}$,可得:φ=$\frac{π}{6}$,
∴由图象可得:cos(πx0+$\frac{π}{6}$)=$\frac{\sqrt{3}}{2}$,可得:πx0+$\frac{π}{6}$=2π-$\frac{π}{6}$,解得:x0=$\frac{5}{3}$,
∴f(3x0)=f(5)=cos(5π+$\frac{π}{6}$)=-$\frac{\sqrt{3}}{2}$,
故选:D.

点评 本题主要考查了余弦函数的图象和性质,考查了计算能力和数形结合思想的应用,其中求φ的值是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知点A(2,m),B(3,3),直线AB的斜率为1,那么m的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数f(x)=$\sqrt{x}$的反函数是f-1(x),则f-1(4)=16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.2016年下半年,锦阳市教体局举行了市教育系统直属单位职工篮球比赛,以增强直属单位间的交流与合作,组织方统计了来自A1,A2,A3,A4,A5等5个直属单位的男子篮球队的平均身高与本次比赛的平均得分,如表所示:
 单位 A1A2  A3A4  A5
 平均身高x(单位:cm) 170 174 176 181 179
 平均得分y62  6466  7068 
(1)根据表中数据,求y关于x的线性回归方程;(系数精确到0.01)
(2)若M队平均身高为185cm,根据(I)中所求得的回归方程,预测M队的平均得分(精确到0.01)
注:回归当初$\widehat{y}=\widehat{b}x+\widehat{a}$中斜率和截距最小二乘估计公式分别为$\widehat{b}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}=\overline{y}-\widehat{b}\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.“a=0”是“直线l1:ax+y-1=0与直线l2:x+ay-1=0垂直”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知在△ABC中,角A,B,C所对的边分别为a,b,c,且a<b<c,C=2A.
(1)若c=$\sqrt{2}$a,求角A;
(2)是否存在△ABC恰好使a,b,c是三个连续的自然数?若存在,求△ABC的周长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,定义在[-2,2]的偶函数f(x)的图象如图所示,函数g(x)=f(x)-$\frac{1}{4}x+\frac{1}{2}$的零点个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.二项式($\sqrt{3}$x+$\root{3}{2}$)n(n∈N*)展开式中只有一项的系数为有理数,则n可能取值为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2sin(ωx+φ)(-π<φ<0,ω>0)的图象关于直线$x=\frac{π}{6}$对称,且两相邻对称中心之间的距离为$\frac{π}{2}$.
(1)求函数y=f(x)的单调递增区间;
(2)若关于x的方程f(x)+log2k=0在区间$[0,\frac{π}{2}]$上总有实数解,求实数k的取值范围.

查看答案和解析>>

同步练习册答案