【题目】在四棱锥中,底面为正方形,.
(1)证明:面⊥面;
(2)若与底面所成的角为, ,求二面角的余弦值.
【答案】(1)见解析;(2)
【解析】
(1)要证面面垂直,一般先证线面垂直,设AC与BD交点为O,则PO⊥BD,而正方形中AC⊥BD,于是可证得结论.
(2)由线面角的定义可得,以A为坐标原点,为x,y轴的正方向建立空间直角坐标系,然后写出各点坐标,求出面BPC和面DPC的法向量,再由法向量的夹角的余弦值得二面角的余弦.
(1)证明:连接AC,BD交点为O,∵四边形ABCD为正方形,∴
∵,,∴,又∵,∴
又,∴.
(2)∵,过点P做,垂足为E
∴∵PA与底面ABCD所成的角为,∴,
又,设,则
如图所示,以A为坐标原点,为x,y轴的正方向建立空间直角坐标系
设面法向量为,
,∴,
,∴
同理的法向量,
∴求二面角的余弦值
科目:高中数学 来源: 题型:
【题目】某研究所开发了一种新药,测得成人注射该药后血药浓度y(微克/毫升)与给药时间x(小时)之间的若干组数据,并由此得出y与x之间的一个拟合函数y=40(0.6x﹣0.62x)(x∈[0,12]),其简图如图所示.试根据此拟合函数解决下列问题:
(1)求药峰浓度与药峰时间(精确到0.01小时),并指出血药浓度随时间的变化趋势;
(2)求血药浓度的半衰期(血药浓度从药峰浓度降到其一半所需要的时间)(精确到0.01小时).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线过点,其参数方程为,(为参数,),以坐标原点为极点,以轴的 非负半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程和曲线的直角坐标方程;
(2)若曲线和曲线交于两点,且,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:(a>b>0)的两个焦点分别为F1(-,0)、F2(,0).点M(1,0)与椭圆短轴的两个端点的连线相互垂直.
(1)求椭圆C的方程;
(2)已知点N的坐标为(3,2),点P的坐标为(m,n)(m≠3).过点M任作直线l与椭圆C相交于A、B两点,设直线AN、NP、BN的斜率分别为k1、k2、k3,若k1+k3=2k2,试求m,n满足的关系式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在第二届乌镇互联网大会中,为了提高安保的级别同时又为了方便接待,现将其中的五个参会国的人员安排酒店住宿,这五个参会国要在、、三家酒店选择一家,且每家酒店至少有一个参会国入住,则这样的安排方法共有_________(填具体数字)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com