精英家教网 > 高中数学 > 题目详情

已知椭圆的中心在坐标原点,焦点在轴上且过点,离心率是
(1)求椭圆的标准方程;
(2)直线过点且与椭圆交于两点,若,求直线的方程.

(1);(2)

解析试题分析:(1)由题设条件知关于a,b,c的方程组,由此能求出椭圆方程. 
(2)可以设直线方程(斜率不存在单独考虑),然后与椭圆方程联立,消去y得到关于x的一元二次方程,利用韦达定理结合题目条件建立方程即可求出直线方程.
试题解析:(1)设椭圆的方程为.
由已知可得            3分
解得.
故椭圆的方程为.                6分
(2)由已知,若直线的斜率不存在,则过点的直线的方程为
此时,显然不成立.     7分
若直线的斜率存在,则设直线的方程为

整理得.            9分



,①  . ②       10分
因为,即.③
①②③联立解得.                    13分
所以直线的方程为.   14分
考点:(1)椭圆标准方程;(2)直线与圆锥曲线的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知椭圆=1(a>b>0),F1、F2分别为椭圆的左、右焦点,A为椭圆的上顶点,直线AF2交椭圆于另一点B.

(1)若∠F1AB=90°,求椭圆的离心率;
(2)若=2·,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知圆C与y轴相切于点T(0,2),与x轴正半轴相交于两点M,N(点M在点N的右侧),且|MN|=3,已知椭圆D:+=1(a>b>0)的焦距等于2|ON|,且过点(,).

(1)求圆C和椭圆D的方程;
(2)若过点M斜率不为零的直线l与椭圆D交于A、B两点,求证:直线NA与直线NB的倾斜角互补.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:+=1(a>b>0)的焦距为4,且过点P(,).
(1)求椭圆C的方程;
(2)设Q(x0,y0)(x0y0≠0)为椭圆C上一点.过点Q作x轴的垂线,垂足为E.取点A(0,2),连接AE,过点A作AE的垂线交x轴于点D.点G是点D关于y轴的对称点,作直线QG,问这样作出的直线QG是否与椭圆C一定有唯一的公共点?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆,直线是直线上的线段,且是椭圆上一点,求面积的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线C顶点为原点,其焦点F(0,c)(c>0)到直线l:x-y-2=0的距离为,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.
(1)求抛物线C的方程;
(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;
(3)当点P在直线l上移动时,求|AF|·|BF|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点在椭圆:上,以为圆心的圆与轴相切于椭圆的右焦点,且,其中为坐标原点.
(1)求椭圆的方程;
(2)已知点,设是椭圆上的一点,过两点的直线轴于点,若, 求直线的方程;
(3)作直线与椭圆:交于不同的两点,,其中点的坐标为,若点是线段垂直平分线上一点,且满足,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的中心在坐标原点,焦点在x轴上且过点P,离心率是.
(1)求椭圆C的标准方程;
(2)直线l过点E (-1,0)且与椭圆C交于AB两点,若|EA|=2|EB|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线Cy2=2px(p>0)的焦点为F,抛物线C与直线l1y=-x的一个交点的横坐标为8.
(1)求抛物线C的方程;
(2)不过原点的直线l2l1垂直,且与抛物线交于不同的两点AB,若线段AB的中点为P,且|OP|=|PB|,求△FAB的面积.

查看答案和解析>>

同步练习册答案