【题目】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体的所有棱长和为_______.
科目:高中数学 来源: 题型:
【题目】设函数,其中,.
(1)设,若函数的图象的一条对称轴为直线,求的值;
(2)若将的图象向左平移个单位,或者向右平移个单位得到的图象都过坐标原点,求所有满足条件的和的值;
(3)设,,已知函数在区间上的所有零点依次为,且,,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.
(1)写出C的普通方程;
(2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设全集I={1,2,3,4,5,6},集合A,B都是I的子集,若AB={1,3,5},则称A,B为“理想配集”,记作(A,B),问这样的“理想配集”(A,B)共有( )
A. 7个 B. 8个 C. 27个 D. 28个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)(x∈R)满足f(﹣x)=f(x),f(x)=f(2﹣x),且当x∈[0,1]时,f(x)=x3 . 又函数g(x)=|xcos(πx)|,则函数h(x)=g(x)﹣f(x)在 上的零点个数为( )
A.5
B.6
C.7
D.8
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,雾霾日趋严重,雾霾的工作、生活受到了严重的影响,如何改善空气质量已成为当今的热点问题,某空气净化器制造厂,决定投入生产某型号的空气净化器,根据以往的生产销售经验得到下面有关生产销售的统计规律,每生产该型号空气净化器(百台),其总成本为(万元),其中固定成本为12万元,并且每生产1百台的生产成本为10万元(总成本=固定成本+生产成本),销售收入(万元)满足,假定该产品销售平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:
(1)求利润函数的解析式(利润=销售收入-总成本);
(2)工厂生产多少百台产品时,可使利润最多?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表
年产量/亩 | 年种植成本/亩 | 每吨售价 | |
黄瓜 | 4吨 | 1.2万元 | 0.55万元 |
韭菜 | 6吨 | 0.9万元 | 0.3万元 |
为使一年的种植总利润(总利润=总销售收入﹣总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为( )
A.50,0
B.30,20
C.20,30
D.0,50
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取60名高中生做问卷调查,得到以下数据:
作文成绩优秀 | 作文成绩一般 | 总计 | |
课外阅读量较大 | 22 | 10 | 32 |
课外阅读量一般 | 8 | 20 | 28 |
总计 | 30 | 30 | 60 |
由以上数据,计算得到的观测值,根据临界值表,以下说法正确的是( )
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.05 | 0.010 | 0.005 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
A. 在样本数据中没有发现足够证据支持结论“作文成绩优秀与课外阅读量大有关”
B. 在犯错误的概率不超过0.001的前提下,认为作文成绩优秀与课外阅读量大有关
C. 在犯错误的概率不超过0.05的前提下,认为作文成绩优秀与课外阅读量大有关
D. 在犯错误的概率不超过0.005的前提下,认为作文成绩优秀与课外阅读量大有关
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com