精英家教网 > 高中数学 > 题目详情
设△ABC的三个内角,A,B,C对边分别是a,b,c,已知
a
sinA
=
b
3
cosB

(1)求角B:
(2)若△ABC的面积为2
3
,且c=2a求b的值.
分析:(1)直接利用正弦定理求出B的正切值,然后求出B的大小.
(2)通过三角形的面积以及c=2a求出a,c然后利用余弦定理求出b的值.
解答:解:(1)在△ABC中,由正弦定理,得
a
sinA
=
b
sinB

又因为
a
sinA
=
b
3
cosB
,所以sinB=
3
cosB,
所以tanB=
3
,又因为0<B<π,所以B=
π
3

(2)因为△ABC的面积为2
3

所以
1
2
acsin
π
3
=2
3
,又c=2a,解得a=2,c=4,
由余弦定理b2=a2+c2-2accos
π
3
=12,
所以b=2
3
点评:本题考查正弦定理与余弦定理的应用三角形的面积公式的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设△ABC的三个内角A,B,C对边分别是a,b,c,已知
a
sinA
=
3
b
cosB

(I)求角B的大小;
(II)若cos(B+C)+
3
sinA=2,且bc=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2cosxsin(x+
π
6
)+2sinxcos(x+
π
6
)

(I)当x∈[0,
π
2
]时,求f(x)
的值域;
(II)设△ABC的三个内角A,B,C所对的三边依次为a,b,c,已知f(A)=1,a=
7
,△ABC面积为
3
3
2
,求b+c

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的三个内角A、B、C对的边分别为a、b、c且a2+b2=mc2(m为常数),若tanC(tanA+tanB)=2tanAtanB,则实数m的值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的三个内角分别为A,B,C.向量
m
=(1,cos
C
2
)与
n
=(
3
sin
C
2
+cos
C
2
3
2
)
共线.
(Ⅰ)求角C的大小;
(Ⅱ)设角A,B,C的对边分别是a,b,c,且满足2acosC+c=2b,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的三个内角为A,B,C,则“sinA>sinB”是“cosA<cosB”的(  )

查看答案和解析>>

同步练习册答案