分析 判断数列是等比数列,然后利用等比数列求和公式求解即可.
解答 解:数列{an}中,满足a1+a2+…+an=3n-1,
可得a1+a2+…+an-1=3n-1-1,
可得an=2•3n-1,由a1=2,满足题意,所以数列{an}是等比数列,首项为2,公比为3,
则{$\frac{1}{{a}_{n}}$}也是等比数列,首项为:$\frac{1}{2}$,等比为:$\frac{1}{3}$,
所以:$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$=$\frac{\frac{1}{2}(1-\frac{1}{{3}^{n}})}{1-\frac{1}{3}}$=$\frac{3}{4}(1-\frac{1}{{3}^{n}})$.
故答案为:$\frac{3}{4}(1-\frac{1}{{3}^{n}})$.
点评 本题考查数列求和,等比数列的判断,考查转化思想以及计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{\sqrt{2}}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ①② | B. | ①③ | C. | ①④ | D. | ③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{10}$ | B. | $\frac{3}{10}$ | C. | $\frac{6}{10}$ | D. | $\frac{7}{10}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com