精英家教网 > 高中数学 > 题目详情
给出下列四个命题:
①在△ABC中,∠A>∠B是sinA>sinB的充要条件;
②给定命题p,q,若“p或q”为真,则“p且q”为真;
③设a,b,m∈R,若a<b,则am2<bm2
④若直线l1:ax+y+1=0与直线l2:x-y+1=0垂直,则a=1.
其中正确命题的序号是(  )
分析:①我们先用和差化积化简sinA-sinB=2cos
A+B
2
sin
A-B
2
,在△ABC中,可得cos
A+B
2
>O
,再由0<B<A<π?0<sin
A-B
2
<1
,进而可判断出.
②弄清“p或q”命题、“p且q”命题的真假与命题p、q的真假之间的关系,可以判断出②是否正确.
③要注意m2≥0,而当m=0时,am2=bm2,据此可判断出答案.
④在两直线的斜率存在的条件下,两直线垂直的充要条件是:kl1kl2=-1,据此可以求出a=1.
解答:解:①∵sinA-sinB=2cos
A+B
2
sin
A-B
2

由0<A+B<π,∴0<
A+B
2
π
2
,∴0<cos
A+B
2
<1
;由0<B<A<π,∴0<A-B<π,∴0<
A-B
2
π
2
,∴0<sin
A-B
2
<1

∴sinA-sinB>0.
反之,若sinA-sinB=2cos
A+B
2
sin
A-B
2
>0成立,∵0<cos
A+B
2
<1
成立,∴sin
A-B
2
>0

又0<A<π,0<B<π,∴-
π
2
A-B
2
π
2
,∴0<
A-B
2
π
2
,∴A>B成立.故①正确.
②命题p,q中有一个为真,则命题“p或q”为真,而只有当p与q都为真时,命题“p且q”才为真,故②是假命题.
③若m2=0时,虽然a<b,但是am2=bm2,故③是假命题.
④∵l1⊥l2,∴kl1kl2=-1,∴(-a)×1=-1,∴a=1.所以④正确.
由以上可知①④正确.
故答案是B.
点评:本题考察复合命题的真假及充要条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、已知a、b是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:
①若a⊥α,a⊥β,则α∥β;
②若α⊥γ,β⊥γ,则α∥β;
③若α∥β,a?α,b?β,则a∥b;
④若α∥β,α∩γ=a,β∩γ=b,则a∥b.
其中正确命题的序号有
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=
1
x
的单调减区间是(-∞,0)∪(0,+∞);
②函数y=x2-4x+6,当x∈[1,4]时,函数的值域为[3,6];
③函数y=3(x-1)2的图象可由y=3x2的图象向右平移1个单位得到;
④若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,1];
⑤若A={s|s=x2+1},B={y|x=
y-1
}
,则A∩B=A.
其中正确命题的序号是
③④⑤
③④⑤
.(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

将边长为2,锐角为60°的菱形ABCD沿较短对角线BD折成二面角A-BD-C,点E,F分别为AC,BD的中点,给出下列四个命题:
①EF∥AB;②直线EF是异面直线AC与BD的公垂线;③当二面角A-BD-C是直二面角时,AC与BD间的距离为
6
2
;④AC垂直于截面BDE.
其中正确的是
②③④
②③④
(将正确命题的序号全填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题,其中正确的命题的个数为(  )
①命题“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
log2sin
π
12
+log2cos
π
12
=-2;
③函数y=tan
x
2
的对称中心为(kπ,0),k∈Z;
④[cos(3-2x)]=-2sin(3-2x)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=ax(a>0且a≠1)与函数y=logaax(a>0且a≠1)的定义域相同;
②函数y=x3与y=3x的值域相同;
③函数y=
1
2
+
1
2x-1
y=
(1+2x)2
x•2x
都是奇函数;
④函数y=(x-1)2与y=2x-1在区间[0,+∞)上都是增函数,其中正确命题的序号是(  )

查看答案和解析>>

同步练习册答案