精英家教网 > 高中数学 > 题目详情
设向量
a
=(x,2),
b
=(x+n,2x-1)
(n∈N*),函数y=
a
b
在[0,1]上的最大值与最小值的和为an,又数列{bn}满足:nb1+(n-1)b2+…+2bn-1+bn=(
9
10
)n-1+(
9
10
)n-2+
…+
9
10
+1

(1)求an、bn的表达式.
(2)Cn=-anbn,问数列{cn}中是否存在正整数k,使得对于任意的正整数n,都有Cn≤Ck成立,若存在,求出k的值,若不存在,说明理由.
分析:(1)由向量的数量积写出函数y,函数是二次函数,求出函数在[0,1]上的最值,则an可求,然后在给出的递推式中取n=n-1再写出一个,两式相减可得数列{bn}的前n项和,则bn可求;
(2)把an、bn代入cn的表达式后化为关于n的函数,由函数式的值等于0分析n的取值.
解答:解;(1)y=
a
b
=(x,2)(x+n,2x-1)=x2+(n+4)x-2,对称轴为x=-
n+4
2
<0
,所以函数在[0,1]上递增,
当x=0时,ymin=-2,当x=1时,ymax=n+3,∴an=-2+n+3=n+1.
又因为nb1+(n-1)b2+…+2bn-1+bn=(
9
10
)n-1+(
9
10
)n-2+…+
9
10
+1
                   ①
令n=n-1,则(n-1)b1+(n-2)b2+…+bn-1=(
9
10
)n-2+
(
9
10
)n-3+…+
9
10
+1
     ②
①-②得:b1+b2+…+bn-1+bn=(
9
10
)n-1

所以Sn=(
9
10
)n-1

当n=1时,b1=S1=1,
当n≥2时,bn=Sn-Sn-1=(
9
10
)n-1-(
9
10
)n-2
=-
1
10
•(
9
10
)n-2

所以bn=
1n=1
-
1
10
•(
9
10
)n-2n≥2

(2)Cn=-anbn=
-2n=1
n+1
10
•(
9
10
)n-2n≥2
,设存在正整数k,使得对于任意的正整数n,都有Cn≤Ck成立,
因为C2-C1=
3
10
+2=
23
10
>0
,所以C2>C1
当n≥2时,Cn+1-Cn=(
9
10
)n-2
8-n
100
,所以当n<8时,Cn+1>Cn
当n=8时,Cn+1=Cn,当n>8时,Cn+1<Cn
∴C1<C2<…<C8=C9>C10>…,
∴存在正整数k=8或9,使得对于任意的正整数n,都有Cn≤Ck成立.
点评:本题考查了数列的递推式及数列与不等式的综合,训练了错位相减法,在给出数列的前n项和后,求数列通项时一定要讨论n=1时的情况.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设向量
a
=(x,2),
b
=(x+n,2x-1) (n∈N+)
,函数y=
a
b
在[0,1]上的最小值与最大值的和为an,又数列{bn}满足:nb1+(n-1)b2+…+bn=(
9
10
)n-1+(
9
10
)n-2+…+(
9
10
)+1

(1)求证:an=n+1;
(2)求bn的表达式;
(3)cn=-an•bn,试问数列{cn}中,是否存在正整数k,使得对于任意的正整数n,都有cn≤ck成立?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(x,2),
b
=(2,1)
,若
a
b
的夹角为锐角,则实数x的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
=(x , 2)
=(x+n , 2x-1)
(n为正整数),函数y=
在[0,1]上的最小值与最大值的和为an,又数列{bn}满足:nb1+(n-1)b2+…+2bn-1+bn=(
9
10
)n-1+(
9
10
)n-2+…+
9
10
+1

(1)求证:an=n+1(2).
(2)求bn的表达式.
(3)若cn=-an•bn,试问数列{cn}中,是否存在正整数k,使得对于任意的正整数n,都有cn≤ck成立?证明你的结论.(注:
=( a1 ,a2 )
={ a1 ,a2 }
表示意义相同)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•嘉定区三模)设向量
a
=(x , 2)
b
=(x+n , 2x-1)
(n∈N*),函数y=
a
b
在x∈[0,1]上的最小值与最大值的和为an,又数列{bn}满足b1=1,b1+b2+…+bn=(
9
10
)n-1

(1)求证:an=n+1;
(2)求数列{bn}的通项公式;
(3)设cn=-an•bn,试问数列{cn}中,是否存在正整数k,使得对于任意的正整数n,都有cn≤ck成立?若存在,求出所有满足条件的k的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案