精英家教网 > 高中数学 > 题目详情
19.设y1=40.9,y2=lo${g}_{\frac{1}{2}}$4.3,y3=${(\frac{1}{3})}^{1.5}$,则它们的大小顺序为y2<y3<y1

分析 由指数函数和对数函数的单调性可得三个值得范围,可得答案.

解答 解:由指数函数y=4x单调递增可得y1=40.9>40=1,
由对数函数y=lo${g}_{\frac{1}{2}}$x在(0,+∞)单调递减可得y2=lo${g}_{\frac{1}{2}}$4.3<lo${g}_{\frac{1}{2}}$1=0;
由指数函数y=($\frac{1}{3}$)x单调递减可得y3=${(\frac{1}{3})}^{1.5}$∈(0,1),
∴y2<y3<y1
故答案为:y2<y3<y1

点评 本题考查函数值得大小比较,涉及指数函数和对数函数的单调性,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知点P(1,1),圆C:x2+y2-4x=2,过点P的直线l与圆C交于A,B两点,线段AB的中点为M(M不同于P),若|OP|=|OM|,则l的方程是3x+y-4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知曲线x2+y2=Ax+By+C过原点,则必有C=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=sin(2x+φ),(φ∈R),若f(x)≤|f($\frac{π}{6}$)|对x∈R恒成立,且f($\frac{π}{2}$)<f(π),对于结论:①f($\frac{π}{2}$)=-$\frac{1}{2}$;②f(x)是奇函数;③f(x)的单调递增区间是[kx-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z);④f($\frac{7π}{10}$)>f($\frac{π}{5}$),其中正确的是(  )
A.①②B.②③C.③④D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若一系列函数的解析式和值域相同,但其定义域不同,则称这些函数为“同族函数”,例如函数y=x2,x∈[1,2]与函数y=x2,x∈[-2,-1]即为“同族函数”.请你找出下面哪些函数解析式也能够被用来构造“同族函数”,答:①③⑤(请填写序号)
①y=|x-2|;  ②y=x;  ③y=log${\;}_{\frac{1}{2}}$(1-x2);  ④y=5x;   ⑤y=$\frac{{2}^{-x}+{2}^{x}}{{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.(1)设数列{an}中,a1=2.an+1=an+n+1.则通项an=$\frac{{n}^{2}+n+2}{2}$;
(2)数列{an}中,a1=1,an+1=3an+2,则它的一个通项公式为an=-1+2•3n-1
(3)在数列{an}中.a1=1.前n项和Sn=$\frac{n+2}{3}{a}_{n}$.则{an} 的通项公式为an=$\frac{n(n+1)}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.与圆x2+y2-8x-4y+16=0相切,且在两坐标轴上的截距相等的直线有4条.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若角α的终边与角$\frac{π}{3}$的终边关于直线y=-x对称,写出与角α+$\frac{π}{2}$终边相同的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图.在四棱锥P-ABCD中,∠PAD=90°,PA⊥CD.点M是棱PD的中点.
(1)证明:平面PAB⊥平面ABCD;
(2)若底面ABCD是边长为2的正方形,PA=2,求异面直线AP与BM所成角的余弦值.

查看答案和解析>>

同步练习册答案