精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)是定义在R上的奇函数,当x<0时,f(x)=( x
(1)求当x>0时f(x)的解析式;
(2)画出函数f(x)在R上的图象;

(3)写出它的单调区间.

【答案】
(1)解:若 x>0,则﹣x<0…

∵当x<0时,f(x)=( x

∴f(﹣x)=( x

∵f(x)是定义在R上的奇函数,

f(﹣x)=﹣f(x),

∴f(x)=﹣( x=﹣2x


(2)解:∵(x)是定义在R上的奇函数,

∴当x=0时,f(x)=0,

∴f(x)=

函数图象如下图所示:


(3)解:由(2)中图象可得:f(x)的减区间为(﹣∞,+∞);

无增区间


【解析】(1)若 x>0,则﹣x<0,根据x<0时,f(x)=( x . 奇函数满足:f(﹣x)=﹣f(x),可得当x>0时f(x)的解析式;(2)由(1)可得函数的解析式,结合指数函数的图象和性质,可画出函数f(x)在R上的图象;(3)由(2)中图象,可得函数的单调区间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆,离心率为,两焦点分别为,过的直线交椭圆两点,且的周长为8.

(1)求椭圆的方程;

(2)过点作圆的切线交椭圆两点,求弦长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(x+1),g(x)=loga(1﹣x)其中(a>0且a≠1).
(1)判断f(x)﹣g(x)的奇偶性,并说明理由;
(2)求使f(x)﹣g(x)>0成立的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的准线为,焦点为 为坐标原点.

(1)求过点,且与相切的圆的方程;

(2)过的直线交抛物线两点, 关于轴的对称点为,求证:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数).

(Ⅰ)讨论函数的极值点的个数;

(Ⅱ)若函数的图象与函数的图象有两个不同的交点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x,y满足约束条件 ,当目标函数z=ax+by(a>0,b>0)在该约束条件下取到最小值2 时,a2+b2的最小值为(
A.5
B.4
C.
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过,圆心在直线上,过点,且斜率为的直线交圆相交于两点.

(Ⅰ)求圆的方程;

(Ⅱ)(i)请问是否为定值.若是,请求出该定值,若不是,请说明理由;

(ii)若为坐标原点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱台中,底面为平行四边形, 上的点.且.

(1)求证:

(2)若的中点, 为棱上的点,且与平面所成角的正弦值为,试求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ) 部分图象如图所示.
(Ⅰ)求f(x)的最小正周期及解析式;
(Ⅱ)设g(x)=f(x)﹣cos2x,求函数g(x)在区间 上的最大值和最小值.

查看答案和解析>>

同步练习册答案