【题目】已知f(x)是定义在R上的奇函数,当x<0时,f(x)=( )x .
(1)求当x>0时f(x)的解析式;
(2)画出函数f(x)在R上的图象;
(3)写出它的单调区间.
【答案】
(1)解:若 x>0,则﹣x<0…
∵当x<0时,f(x)=( )x.
∴f(﹣x)=( )﹣x.
∵f(x)是定义在R上的奇函数,
f(﹣x)=﹣f(x),
∴f(x)=﹣( )﹣x=﹣2x
(2)解:∵(x)是定义在R上的奇函数,
∴当x=0时,f(x)=0,
∴f(x)= .
函数图象如下图所示:
(3)解:由(2)中图象可得:f(x)的减区间为(﹣∞,+∞);
无增区间
【解析】(1)若 x>0,则﹣x<0,根据x<0时,f(x)=( )x . 奇函数满足:f(﹣x)=﹣f(x),可得当x>0时f(x)的解析式;(2)由(1)可得函数的解析式,结合指数函数的图象和性质,可画出函数f(x)在R上的图象;(3)由(2)中图象,可得函数的单调区间.
科目:高中数学 来源: 题型:
【题目】已知椭圆,离心率为,两焦点分别为,过的直线交椭圆于两点,且的周长为8.
(1)求椭圆的方程;
(2)过点作圆的切线交椭圆于两点,求弦长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga(x+1),g(x)=loga(1﹣x)其中(a>0且a≠1).
(1)判断f(x)﹣g(x)的奇偶性,并说明理由;
(2)求使f(x)﹣g(x)>0成立的x的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的准线为,焦点为, 为坐标原点.
(1)求过点,且与相切的圆的方程;
(2)过的直线交抛物线于两点, 关于轴的对称点为,求证:直线过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知x,y满足约束条件 ,当目标函数z=ax+by(a>0,b>0)在该约束条件下取到最小值2 时,a2+b2的最小值为( )
A.5
B.4
C.
D.2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆经过、,圆心在直线上,过点,且斜率为的直线交圆相交于、两点.
(Ⅰ)求圆的方程;
(Ⅱ)(i)请问是否为定值.若是,请求出该定值,若不是,请说明理由;
(ii)若为坐标原点,且,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=Asin(ωx+φ) 部分图象如图所示.
(Ⅰ)求f(x)的最小正周期及解析式;
(Ⅱ)设g(x)=f(x)﹣cos2x,求函数g(x)在区间 上的最大值和最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com