精英家教网 > 高中数学 > 题目详情

【题目】已知服从正态分布的随机变量在区间内取值的概率分别为0.6826,0.9544,0.9974.若某种袋装大米的质量(单位:)服从正态分布,任意选一袋这种大米,质量在的概率为_

【答案】0.8185

【解析】

根据正态分布曲线的性质得到质量在49.8kg50.2kg之间的大米概率为0.9544,则小于49.8kg的大米的概率为,质量在49.9kg50.1kg的大米的概率为0.6826,故质量大于50.1kg的大米的概率为,让1减去这些概率之和得到结果.

根据题意得到质量在49.8kg50.2kg之间的大米概率为0.9544,则小于49.8kg的大米的概率为;质量在49.9kg50.1kg的大米的概率为0.6826,故质量大于50.1kg的大米的概率为.故质量在的概率为

故答案为:0.8185.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《九章算术》中,将底面为直角三角形且侧棱垂直于底面的三棱柱称之为堑堵;将底面为矩形且一侧棱垂直于底面的四棱锥称之为阳马;将四个面均为直角三角形的四面体称之为鳖臑[biē nào].某学校科学小组为了节约材料,拟依托校园内垂直的两面墙和地面搭建一个堑堵形的封闭的实验室是边长为2的正方形.

1)若是等腰三角形,在图2的网格中(每个小方格都是边长为1的正方形)画出堑堵的三视图;

2)若上,证明:,并回答四面体是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;

3)当阳马的体积最大时,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中为正实数.

)若是函数的极值点,讨论函数的单调性;

)若上无最小值,且上是单调增函数,求的取值范围,并由此判断曲线与曲线交点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:

分组

频数

频率

[10,15)

10

0.25

[15,20)

25

n

[20,25)

m

p

[25,30)

2

0.05

合计

M

1

(1)求出表中Mp及图中a的值;

(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[15,20)内的人数;

(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,请列举出所有基本事件,并求至多1人参加社区服务次数在区间[20,25)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某区选派7名队员代表本区参加全市青少年围棋锦标赛,其中3名来自A学校且1名为女棋手,另外4名来自B学校且2名为女棋手从这7名队员中随机选派4名队员参加第一阶段的比赛

求在参加第一阶段比赛的队员中,恰有1名女棋手的概率;

X为选出的4名队员中AB两校人数之差的绝对值,求随机变量X的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,…,等10所高校举行自主招生考试,某同学参加每所高校的考试获得通过的概率均为.

(1)如果该同学10所高校的考试都参加,恰有所通过的概率为,当为何值时,取得最大值;

(2)若,该同学参加每所高校考试所需的费用均为元,该同学决定按,…,顺序参加考试,一旦通过某所高校的考试,就不再参加其它高校的考试,否则,继续参加其它高校的考试,求该同学参加考试所需费用的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程与曲线的直角坐标方程;

(2)若交于两点,点的极坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和

1)求数列{an}的通项公式an

2)设数列{bn}的前n项和为Tn,满足b11

①求数列{bn}的通项公式bn

②若存在pqkN*pqk,使得ambqamanbpanbk成等差数列,求m+n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆x2+y2=8内有一点P0-12),AB为过点P0且倾斜角为α的弦.

1)当α=时,求AB的长;

2)当弦AB被点P0平分时,写出直线AB的方程(用直线方程的一般式表示)

查看答案和解析>>

同步练习册答案