精英家教网 > 高中数学 > 题目详情
18.下列命题中,正确的命题个数是(  )
①用相关系数r来判断两个变量的相关性时,r越接近0,说明两个变量有较强的相关性;
②将一组数据中的每个数据都加上同一个非零常数后,期望改变,方差不变;
③某厂生产的零件外直径x~N(3,1),且p(2≤x≤4)=0.68,则p(x<4)=0.84
④用数学归纳法证明不等式$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$<$\frac{13}{14}$(n≥2,n∈{N*)的过程中,由n=k递推到n=k+1时不等式的左边增加项为$\frac{1}{2k+1}$-$\frac{1}{2k+2}$.
A.1个B.2个C.3个D.4个

分析 ①根据相关系数r的性质进行判断,
②根据期望和方差的定义和性质进行判断,
③根据正态分布的性质进行求解.
④比较当n=k和n=k+1时,左边项的变化进行判断.

解答 解:①两个变量之间的相关系数,r的绝对值越接近于1,表示两个变量的线性相关性越强,r的绝对值越接近于0,表示两个变量之间几乎不存在线性相关,故①不正确;
②将一组数据中的每个数据都加上同一个非零常数后,期望改变,方差不变,正确,故②正确,
③某厂生产的零件外直径x~N(3,1),且p(2≤x≤4)=0.68,则p(3≤x≤4)=0.34,则p(x<4)=0.34+0.5=0.84,故③正确,
④用数学归纳法证明不等式$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$<$\frac{13}{14}$(n≥2,n∈{N*)的过程中,
当n=k时,左边为$\frac{1}{k+1}$+$\frac{1}{k+2}$+…+$\frac{1}{2k}$,
当n=k+1时,左边为$\frac{1}{k+2}$+…+$\frac{1}{2k}$+$\frac{1}{2k+1}$+$\frac{1}{2k+2}$=$\frac{1}{k+1}$+$\frac{1}{k+2}$+…+$\frac{1}{2k}$+($\frac{1}{2k+1}$+$\frac{1}{2k+2}$-$\frac{1}{k+1}$),
故左边增加的项是$\frac{1}{2k+1}$+$\frac{1}{2k+2}$-$\frac{1}{k+1}$,故④错误,
故正确的是②③,
故选:B

点评 本题主要考查命题的真假判断,涉及知识点较多,综合性较强,但难度不大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)(x∈R)满足f(-x)+f(x)=2,若函数y=x3+x+1与y=f(x)的图象的交点从左到右依次为(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5),则x1+x2+x3+x4+x5+y1+y2+y3+y4+y5=(  )
A.1B.4C.5D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设{an}是公比为q的等比数列,令bn=an+1(n∈N*),若数列{bn}的连续四项在集合{-15,-3,9,18,33}中,则q等于(  )
A.-4B.2C.-4或-$\frac{1}{4}$D.-2或-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若不等式x2-2ax+a>0对一切实数x∈R恒成立,则关于t的不等式loga(t2+2t-2)>0的解集为(  )
A.(-3,1)B.$(-1+\sqrt{3},1)∪(-3,-1-\sqrt{3})$C.$(-1-\sqrt{3},-1+\sqrt{3})$D.$(-∞,-1-\sqrt{3})∪(-1+\sqrt{3},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.关于函数f(x)=tan(cosx),下列结论中正确的是(  )
A.定义域是[-1,1]B.f(x)是奇函数
C.值域是[-tan1,tan1]D.在(-$\frac{π}{2}$,$\frac{π}{2}$)上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在棱长为4的正方体ABCD-A′B′C′D′中,点P在棱CC′上,且CC′=2CP.
(1)求直线AA′与平面APD′所成角的正弦值;
(2)求二面角A-D′P-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知在多面体SP-ABCD中,底面ABCD为矩形,AB=PC=1,AD=AS=2,且AS∥CP且AS⊥面ABCD,E为BC的中点.
(1)求证:AE∥面SPD;
(2)求二面角B-PS-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数f(x)=xlnx-ax3+$\frac{1}{2}$x2-x存在极值,则实数a的取值范围是(  )
A.(-∞,$\frac{1}{3}$)B.(-∞,0]C.(-∞,1)D.(-$\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=x2-aln(x+2),g(x)=xex,且f(x)存在两个极值点x1、x2,其中x1<x2
(1)求实数a的取值范围;
(2)求g(x1-x2)的最小值;
(3)证明不等式:f(x1)+x2>0.

查看答案和解析>>

同步练习册答案