精英家教网 > 高中数学 > 题目详情
已知等比数列{an}满足2a1+a3=3a2,且a3+2是a2,a4的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=an+log2
1an
,设Sn=b1+b2+b3+…+bn,求Sn
分析:(Ⅰ)设等比数列{an}的公比为q,依题意,有
2a1+a3=3a2
a2+a4=2(a3+2)
,变为a1,q的方程组,解出可求得an
(Ⅱ)表示出bn,分组后分别利用等差数列、等比数列的求和公式可求得Sn
解答:解:(Ⅰ)设等比数列{an}的公比为q,
依题意,有
2a1+a3=3a2
a2+a4=2(a3+2)
,即
a1(2+q2)=3a1q,①
a1(q+q3)=2a1q2+4,②

由①得q2-3q+2=0,解得q=2或q=1,
当q=1时,不合题意;当q=2时,代入②得a1=2,
∴an=2•2n-1=2n
(Ⅱ)bn=an+log2
1
an
=2n+log2
1
2n
=2n-n,
∴Sn=2-1+22-2+23-3+…+2n-n
=(2+22+23+…+2n)-(1+2+3+…+n)
=
2(1-2n)
1-2
-
n(n+1)
2

=2n+1-2-
1
2
n-
1
2
n2
点评:本题考查等差数列、等比数列的通项公式及数列求和,等差、等比数列的通项公式、求和公式是解决问题的基础,要熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、已知等比数列{an}的前n项和为Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,则q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a2=9,a5=243.
(1)求{an}的通项公式;
(2)令bn=log3an,求数列{
1bnbn+1
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足a1•a7=3a3a4,则数列{an}的公比q=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中a1=64,公比q≠1,且a2,a3,a4分别为某等差数列的第5项,第3项,第2项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a3+a6=36,a4+a7=18.若an=
12
,则n=
9
9

查看答案和解析>>

同步练习册答案