【题目】已知函数 .
(1)当时,若函数恰有一个零点,求实数的取值范围;
(2)当, 时,对任意,有成立,求实数的取值范围.
【答案】(1)或(2)
【解析】试题分析:(1)讨论、两种情况,分别利用导数研究函数的单调性,结合函数的单调性,利用零点存在定理可得函数恰有一个零点时实数的取值范围;(2)对任意,有成立,等价于,利用导数研究函数的单调性,分别求出最大值与最小值,解不等式即可的结果.
试题解析:(1)函数的定义域为.
当时, ,所以.
①当时, ,所以在上单调递增,
取,则,
(或:因为且时,所以.)
因为,所以,此时函数有一个零点.
②当时,令,解得.
当时, ,所以在上单调递减;
当时, ,所以在上单调递增.
要使函数有一个零点,则即.
综上所述,若函数恰有一个零点,则或.
(2)因为对任意,有成立,
因为,
所以.
因为,则.
所以,所以.
当时, ,当时, ,
所以函数在上单调递减,在上单调递增, ,
因为与,所以.
设 ,
则.
所以在上单调递增,故,所以.
从而 .
所以即,
设 ,则.
当时, ,所以在上单调递增.
又,所以,即为,解得.
因为,所以的取值范围为.
科目:高中数学 来源: 题型:
【题目】某工厂的A、B、C三个不同车间生产同一产品的数量(单位:件)如下表所示.质检人员用分层抽样的方法从这些产品中共抽取6件样品进行检测.
车间 | A | B | C |
数量 | 50 | 150 | 100 |
(1)求这6件样品中来自A、B、C各车间产品的数量;
(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件商品来自相同车间的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中, 为坐标原点, 、是双曲线上的两个动点,动点满足,直线与直线斜率之积为2,已知平面内存在两定点、,使得为定值,则该定值为________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是( )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=a2x2(a>0),g(x)=bln x.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2 ,求a的值;
(2)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com