精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系中,椭圆的左右顶点分别是为直线上一点(点在轴的上方),直线与椭圆的另一个交点为,直线与椭圆的另一个交点为.

(1)若的面积是的面积的,求直线的方程;

(2)设直线与直线的斜率分别为,求证:为定值.

【答案】(1);(2)见解析

【解析】

(1)的面积是的面积的,可知C是AP的中点,利用点C在椭圆上明确P点坐标,从而得到直线的方程;(2)直线PB的方程为代入椭圆方程可得:,利用韦达定理可得M点坐标,进而可知为定值.

(1)由O为线段AB的中点可知:B到直线AP的距离是O到直线AP的距离的两倍,

的面积是的面积的,所以C是AP的中点.

设P(t>0),又A

∵C点在椭圆

,即P

∴直线的方程:

即直线的方程为

(2)直线PB的方程为:,即

代入椭圆方程可得:

,又

,而

为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】

  1. (2015·四川)如果函数f(x)=(m-2)x2+(n-8)x+1(m≥0, n≥0)在区间[, 2]上单调递减,则mn的最大值为( )


A.16
B.18
C.25
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p:方程表示双曲线,q:表示焦点在x轴上的椭圆.

(1)若“pq”是真命题,求实数m的取值范围;

(2)若“pq”是假命题,“pq”是真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的定义域为,使得不等式成立,关于的不等式的解集记为.

(1)若为真,求实数的取值集合

(2)在(1)的条件下,若的充分不必要条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某小区准备在直角围墙)内建有一个矩形的少儿游乐场,分别在墙上,为了安全起见,过矩形的顶点建造一条如图所示的围栏分别在墙上,其中,.

(1)①设,用表示围栏的长度;

②设,用表示围栏的长度;

(2)在第一问中,选择一种表示方法,求如何设计,使得围栏的长度最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校或班级举行活动,通常需要张贴海报进行宣传,现让你设计一张竖向张贴的海报, 要求版心面积为128 dm2 , 上、下两边各空2 dm,左右两边各空1 dm,张贴的长与宽尺
寸为( )才能使四周空白面积最小(
A.20dm,10dm
B.12dm,9dm
C.10dm,8dm
D.8dm,5dm

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:m),(1)将y表示为x的函数(2)试确定x , 使修建此矩形场地围墙的总费用最小,并求出最小总费用
(1)将y表示为x的函数:
(2)试确定x , 使修建此矩形场地围墙的总费用最小,并求出最小总费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合M={x|x2+3x+2<0},集合 ,则M∪N=(
A.{x|x≥﹣2}
B.{x|x>﹣1}
C.{x|x<﹣1}
D.{x|x≤﹣2}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在轴上,离心率为的椭圆过点.

(1)求椭圆方程;

(2)设不过原点O的直线,与该椭圆交于PQ两点,直线OPOQ的斜率依次为,满足,求的值.

查看答案和解析>>

同步练习册答案