精英家教网 > 高中数学 > 题目详情

【题目】已知函数e为自然对数的底数).

1)若,求的最大值;

2)若R上单调递减,

①求a的取值范围;

②当时,证明:.

【答案】11;(2)①,②证明见解析.

【解析】

1)求出函数的导函数,利用导函数与函数单调性的关系当,求出单调递增区间,当,求出函数的单调递减区间,进而可求出最大值.

2)①求出恒成立,化为恒成立,记,讨论值,求出的最小值即可证出;②由题意可得,即,两边取对数可得,下面采用分析法即可证出.

1时,

时,上单调递增

时,上单调递减

2)由

R上单调递减,恒成立,

恒成立,记

恒成立,

时,,符题

时,时,上单调递减

时,上单调递增;

时,时,上单调递减

时,上单调递增;

综上:

②当时,上单调递减,

.

要证,即证

下面证明

,则

在区间上单调递增,,得证

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为菱形,为线段的中点,为线段上的一点.

(1)证明:平面平面.

(2)若,二面角的余弦值为,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某日A, B, C三个城市18个销售点的小麦价格如下表:

销售点序号

所属城市

小麦价格(元/吨)

销售点序号

所属城市

小麦价格(元/吨)

1

A

2420

10

B

2500

2

C

2580

11

A

2460

3

C

2470

12

A

2460

4

C

2540

13

A

2500

5

A

2430

14

B

2500

6

C

2400

15

B

2450

7

A

2440

16

B

2460

8

B

2500

17

A

2460

9

A

2440

18

A

2540

(Ⅰ)求B市5个销售点小麦价格的中位数

(Ⅱ)甲从B市的销售点中随机挑选一个购买1吨小麦,乙从C市的销售点中随机挑选一个购买1吨小麦,求甲花费的费用比乙高的概率

(Ⅲ)如果一个城市的销售点小麦价格方差越大,则称其价格差异性越大.请你对A、B、C三个城市按照小麦价格差异性从大到小进行排序(只写出结果).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】七巧板是一种古老的中国传统智力玩具,是由七块板组成的.而这七块板可拼成许多图形,例如:三角形、不规则多边形、各种人物、动物、建筑物等,清陆以湉《冷庐杂识》写道:近又有七巧图,其式五,其数七,其变化之式多至千余.在18世纪,七巧板流传到了国外,至今英国剑桥大学的图书馆里还珍藏着一部《七巧新谱》.若用七巧板拼成一只雄鸡,在雄鸡平面图形上随机取一点,则恰好取自雄鸡鸡尾(阴影部分)的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校为增加应届毕业生就业机会,每年根据应届毕业生的综合素质和学业成绩对学生进行综合评估,已知某年度参与评估的毕业生共有2000名,其评估成绩近似的服从正态分布.现随机抽取了100名毕业生的评估成绩作为样本,并把样本数据进行了分组,绘制了频率分布直方图:

(1)求样本平均数和样本方差(同一组中的数据用该组区间的中点值作代表);

(2)若学校规定评估成绩超过分的毕业生可参加三家公司的面试.

(ⅰ)用样本平均数作为的估计值,用样本标准差作为的估计值,请利用估计值判断这2000名毕业生中,能够参加三家公司面试的人数;

(ⅱ)若三家公司每家都提供甲、乙、丙三个岗位,岗位工资表如下:

公司

甲岗位

乙岗位

丙岗位

9600

6400

5200

9800

7200

5400

10000

6000

5000

李华同学取得了三个公司的面试机会,经过评估,李华在三个公司甲、乙、丙三个岗位的面试成功的概率均为,李华准备依次从三家公司进行面试选岗,公司规定:面试成功必须当场选岗,且只有一次机会.李华在某公司选岗时,若以该岗位工资与未进行面试公司的工资期望作为抉择依据,问李华可以选择公司的哪些岗位?

并说明理由.

附:,若随机变量

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥,平面平面ABE,四边形ABCD为矩形,FCE上的点,且平面ACE.

1)求证:

2)设M在线段DE上,且满足,试在线段AB上确定一点N,使得平面BCE,并求MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,真命题的个数是(  )

①若“p∨q”为真命题,则“p∧q”为真命题;

②“a∈(0,+∞),函数y=在定义域内单调递增”的否定;

③l为直线,α,β为两个不同的平面,若l⊥β,α⊥β,则l∥α;

④“x∈R,≥0”的否定为“R,<0”.

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面ABCD为直角梯形,,侧面底面ABCD

PB的中点为E,求证:平面PCD

,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下是新兵训练时,某炮兵连周中炮弹对同一目标的命中的情况的柱状图:

(1)计算该炮兵连这周中总的命中频率,并确定第几周的命中频率最高;

(2)以(1)中的作为该炮兵连甲对同一目标的命中率,若每次发射相互独立,且炮兵甲发射次,记命中的次数为,求的方差;

(3)以(1)中的作为该炮兵连炮兵对同一目标的命中率,试问至少要用多少枚这样的炮弹同时对该目标发射一次,才能使目标被击中的概率超过(取

查看答案和解析>>

同步练习册答案