【题目】已知函数(,e为自然对数的底数).
(1)若,求的最大值;
(2)若在R上单调递减,
①求a的取值范围;
②当时,证明:.
【答案】(1)1;(2)①,②证明见解析.
【解析】
(1)求出函数的导函数,利用导函数与函数单调性的关系当,求出单调递增区间,当,求出函数的单调递减区间,进而可求出最大值.
(2)①求出对恒成立,化为对恒成立,记,讨论值,求出的最小值即可证出;②由题意可得,即,两边取对数可得,下面采用分析法即可证出.
(1)时,
时,,在上单调递增
时,,在上单调递减
(2)由
①在R上单调递减,对恒成立,
即对恒成立,记,
则对恒成立,
当时,,符题
当时,时,,在上单调递减
时,,在上单调递增;
当时,时,,在上单调递减
时,,在上单调递增;
综上:
②当时,在上单调递减,,
,,.
要证,即证
下面证明
令,,则,
在区间上单调递增,,得证
科目:高中数学 来源: 题型:
【题目】某日A, B, C三个城市18个销售点的小麦价格如下表:
销售点序号 | 所属城市 | 小麦价格(元/吨) | 销售点序号 | 所属城市 | 小麦价格(元/吨) |
1 | A | 2420 | 10 | B | 2500 |
2 | C | 2580 | 11 | A | 2460 |
3 | C | 2470 | 12 | A | 2460 |
4 | C | 2540 | 13 | A | 2500 |
5 | A | 2430 | 14 | B | 2500 |
6 | C | 2400 | 15 | B | 2450 |
7 | A | 2440 | 16 | B | 2460 |
8 | B | 2500 | 17 | A | 2460 |
9 | A | 2440 | 18 | A | 2540 |
(Ⅰ)求B市5个销售点小麦价格的中位数;
(Ⅱ)甲从B市的销售点中随机挑选一个购买1吨小麦,乙从C市的销售点中随机挑选一个购买1吨小麦,求甲花费的费用比乙高的概率;
(Ⅲ)如果一个城市的销售点小麦价格方差越大,则称其价格差异性越大.请你对A、B、C三个城市按照小麦价格差异性从大到小进行排序(只写出结果).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】七巧板是一种古老的中国传统智力玩具,是由七块板组成的.而这七块板可拼成许多图形,例如:三角形、不规则多边形、各种人物、动物、建筑物等,清陆以湉《冷庐杂识》写道:近又有七巧图,其式五,其数七,其变化之式多至千余.在18世纪,七巧板流传到了国外,至今英国剑桥大学的图书馆里还珍藏着一部《七巧新谱》.若用七巧板拼成一只雄鸡,在雄鸡平面图形上随机取一点,则恰好取自雄鸡鸡尾(阴影部分)的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校为增加应届毕业生就业机会,每年根据应届毕业生的综合素质和学业成绩对学生进行综合评估,已知某年度参与评估的毕业生共有2000名,其评估成绩近似的服从正态分布.现随机抽取了100名毕业生的评估成绩作为样本,并把样本数据进行了分组,绘制了频率分布直方图:
(1)求样本平均数和样本方差(同一组中的数据用该组区间的中点值作代表);
(2)若学校规定评估成绩超过分的毕业生可参加三家公司的面试.
(ⅰ)用样本平均数作为的估计值,用样本标准差作为的估计值,请利用估计值判断这2000名毕业生中,能够参加三家公司面试的人数;
(ⅱ)若三家公司每家都提供甲、乙、丙三个岗位,岗位工资表如下:
公司 | 甲岗位 | 乙岗位 | 丙岗位 |
9600 | 6400 | 5200 | |
9800 | 7200 | 5400 | |
10000 | 6000 | 5000 |
李华同学取得了三个公司的面试机会,经过评估,李华在三个公司甲、乙、丙三个岗位的面试成功的概率均为,李华准备依次从三家公司进行面试选岗,公司规定:面试成功必须当场选岗,且只有一次机会.李华在某公司选岗时,若以该岗位工资与未进行面试公司的工资期望作为抉择依据,问李华可以选择公司的哪些岗位?
并说明理由.
附:,若随机变量,
则.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥,平面平面ABE,四边形ABCD为矩形,,F为CE上的点,且平面ACE.
(1)求证:;
(2)设M在线段DE上,且满足,试在线段AB上确定一点N,使得平面BCE,并求MN的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中,真命题的个数是( )
①若“p∨q”为真命题,则“p∧q”为真命题;
②“a∈(0,+∞),函数y=在定义域内单调递增”的否定;
③l为直线,α,β为两个不同的平面,若l⊥β,α⊥β,则l∥α;
④“x∈R,≥0”的否定为“R,<0”.
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下是新兵训练时,某炮兵连周中炮弹对同一目标的命中的情况的柱状图:
(1)计算该炮兵连这周中总的命中频率,并确定第几周的命中频率最高;
(2)以(1)中的作为该炮兵连甲对同一目标的命中率,若每次发射相互独立,且炮兵甲发射次,记命中的次数为,求的方差;
(3)以(1)中的作为该炮兵连炮兵对同一目标的命中率,试问至少要用多少枚这样的炮弹同时对该目标发射一次,才能使目标被击中的概率超过(取)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com