【题目】把函数f(x)=cos2( x﹣ )的图象向左平移 个单位后得到的函数为g(x),则以下结论中正确的是( )
A.g( )>g( )>0
B.g( ) ??
C.g( )>g( )>0
D.g( )=g( )>0
【答案】A
【解析】解:把函数f(x)=cos2( x﹣ )= 的图象向左平移 个单位后, 得到的函数为g(x)= = 的图象,
故有g( )= + cos = +cos( ﹣ )= +sin ,g( )= +cos = ﹣cos = ﹣cos( + )= +sin ,
而sin >sin >0,∴g( )>g( )>0,
故选:A.
【考点精析】掌握函数y=Asin(ωx+φ)的图象变换是解答本题的根本,需要知道图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.
科目:高中数学 来源: 题型:
【题目】鹰潭市龙虎山花语世界位于中国第八处世界自然遗产,世界地质公元、国家自然文化双遗产地、国家AAAAA级旅游景区﹣﹣龙虎山主景区排衙峰下,是一座独具现代园艺风格的花卉公园,园内汇集了3000余种花卉苗木,一年四季姹紫嫣红花香四溢.花园景观融合法、英、意、美、日、中六大经典园林风格,景观设计唯美新颖.玫瑰花园、香草花溪、台地花海、植物迷宫、儿童乐园等景点错落有致,交相呼应又自成一体,是世界园艺景观的大展示.该景区自2015年春建成试运行以来,每天游人如织,郁金香、向日葵、虞美人等赏花旺季日入园人数最高达万人. 某学校社团为了解进园旅客的具体情形以及采集旅客对园区的建议,特别在2017年4月1日赏花旺季对进园游客进行取样调查,从当日12000名游客中抽取100人进行统计分析,结果如下:(表一)
年龄 | 频数 | 频率 | 男 | 女 |
[0,10) | 10 | 0.1 | 5 | 5 |
[10,20) | ① | ② | ③ | ④ |
[20,30) | 25 | 0.25 | 12 | 13 |
[30,40) | 20 | 0.2 | 10 | 10 |
[40,50) | 10 | 0.1 | 6 | 4 |
[50,60) | 10 | 0.1 | 3 | 7 |
[60,70) | 5 | 0.05 | 1 | 4 |
[70,80) | 3 | 0.03 | 1 | 2 |
[80,90) | 2 | 0.02 | 0 | 2 |
合计 | 100 | 1.00 | 45 | 55 |
(1)完成表格一中的空位①﹣④,并在答题卡中补全频率分布直方图,并估计2017年4月1日当日接待游客中30岁以下人数.
(2)完成表格二,并问你能否有97.5%的把握认为在观花游客中“年龄达到50岁以上”与“性别”相关?
(3)按分层抽样(分50岁以上与50以下两层)抽取被调查的100位游客中的10人作为幸运游客免费领取龙虎山内部景区门票,再从这10人中选取2人接受电视台采访,设这2人中年龄在50岁以上(含)的人数为ξ,求ξ的分布列 (表二)
50岁以上 | 50岁以下 | 合计 | |
男生 | 5 | 40 | 45 |
女生 | 15 | 40 | 55 |
合计 | 20 | 80 | 100 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:k2= ,其中n=a+b+c+d)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年6月14日,第二十一届世界杯足球赛将在俄罗斯拉开帷幕.为了了解喜爱足球运动是否与性别有关,某体育台随机抽取100名观众进行统计,得到如下列联表.
(1)将列联表补充完整,并判断能否在犯错误的概率不超过0.001的前提下认为喜爱足球运动与性别有关?
(2)在不喜爱足球运动的观众中,按性别分别用分层抽样的方式抽取6人,再从这6人中随机抽取2人参加一台访谈节目,求这2人至少有一位男性的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司按现有能力,每月收入为70万元,公司分析部门测算,若不进行改革,入世后因竞争加剧收入将逐月减少.分析测算得入世第一个月收入将减少3万元,以后逐月多减少2万元,如果进行改革,即投入技术改造300万元,且入世后每月再投入1万元进行员工培训,则测算得自入世后第一个月起累计收入与时间(以月为单位)的关系为,且入世第一个月时收入将为90万元,第二个月时累计收入为170万元,问入世后经过几个月,该公司改革后的累计纯收入高于不改革时的累计纯收入.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆C: =1(a>b>0)的离心率为 ,过右焦点F2(c,0)垂直于x轴的直线与椭圆交于A,B两点且|AB|= ,又过左焦点F1(﹣c,0)任作直线l交椭圆于点M
(1)求椭圆C的方程
(2)椭圆C上两点A,B关于直线l对称,求△AOB面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高一(1)(2)两个班联合开展“诗词大会进校园,国学经典润心田”古诗词竞赛主题班会活动,主持人从这两个班分别随机选出20名同学进行当场测试,他们的测试成绩按[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)分组,分别用频率分布直方图与茎叶图统计如图(单位:分):
高一(2)班20名学生成绩茎叶图:
4 | 5 |
5 | 2 |
6 | 4 5 6 8 |
7 | 0 5 5 8 8 8 8 9 |
8 | 0 0 5 5 |
9 | 4 5 |
(Ⅰ)分别计算两个班这20名同学的测试成绩在[80,90)的频率,并补全频率分布直方图;
(Ⅱ)分别从两个班随机选取1人,设这两人中成绩在[80,90)的人数为X,求X的分布列(频率当作概率使用).
(Ⅲ)运用所学统计知识分析比较两个班学生的古诗词水平.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P1(x1 , y1),P2(x2 , y2),P3(x3 , y3),P4(x4 , y4),P5(x5 , y5),P6(x6 , y6)是抛物线C:y2=2px(p>0)上的点,F是抛物线C的焦点,若|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|=36,且x1+x2+x3+x4+x5+x6=24,则抛物线C的方程为( )
A.y2=4x
B.y2=8x
C.y2=12x
D.y2=16x
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定实数 t,已知命题 p:函数 有零点;命题 q: x∈[1,+∞) ≤4-1.
(Ⅰ)当 t=1 时,判断命题 q 的真假;
(Ⅱ)若 p∨q 为假命题,求 t 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:
甲厂:
分组 | [29.86,29.90) | [29.90,29.94) | [29.94,29.98) | [29.98,30.02) | [30.02,30.06) | [30.06,30.10) | [30.10,30.14) |
频数 | 12 | 63 | 86 | 182 | 92 | 61 | 4 |
乙厂:
分组 | [29.86,29.90) | [29.90,29.94) | [29.94,29.98) | [29.98,30.02) | [30.02,30.06) | [30.06,30.10) | [30.10,30.14) |
频数 | 29 | 71 | 85 | 159 | 76 | 62 | 18 |
(1)试分别估计两个分厂生产的零件的优质品率;
(2)由以上统计数据填下面列联表,并问是否有的把握认为“两个分厂生产的零件的质量有差异”.
甲 厂 | 乙 厂 | 合计 | |
优质品 | |||
非优质品 | |||
合计 |
附:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com