精英家教网 > 高中数学 > 题目详情

【题目】把函数f(x)=cos2 x﹣ )的图象向左平移 个单位后得到的函数为g(x),则以下结论中正确的是(
A.g( )>g( )>0
B.g( ??
C.g( )>g( )>0
D.g( )=g( )>0

【答案】A
【解析】解:把函数f(x)=cos2 x﹣ )= 的图象向左平移 个单位后, 得到的函数为g(x)= = 的图象,
故有g( )= + cos = +cos( )= +sin ,g( )= +cos = ﹣cos = ﹣cos( + )= +sin
而sin >sin >0,∴g( )>g( )>0,
故选:A.
【考点精析】掌握函数y=Asin(ωx+φ)的图象变换是解答本题的根本,需要知道图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】鹰潭市龙虎山花语世界位于中国第八处世界自然遗产,世界地质公元、国家自然文化双遗产地、国家AAAAA级旅游景区﹣﹣龙虎山主景区排衙峰下,是一座独具现代园艺风格的花卉公园,园内汇集了3000余种花卉苗木,一年四季姹紫嫣红花香四溢.花园景观融合法、英、意、美、日、中六大经典园林风格,景观设计唯美新颖.玫瑰花园、香草花溪、台地花海、植物迷宫、儿童乐园等景点错落有致,交相呼应又自成一体,是世界园艺景观的大展示.该景区自2015年春建成试运行以来,每天游人如织,郁金香、向日葵、虞美人等赏花旺季日入园人数最高达万人. 某学校社团为了解进园旅客的具体情形以及采集旅客对园区的建议,特别在2017年4月1日赏花旺季对进园游客进行取样调查,从当日12000名游客中抽取100人进行统计分析,结果如下:(表一)

年龄

频数

频率

[0,10)

10

0.1

5

5

[10,20)

[20,30)

25

0.25

12

13

[30,40)

20

0.2

10

10

[40,50)

10

0.1

6

4

[50,60)

10

0.1

3

7

[60,70)

5

0.05

1

4

[70,80)

3

0.03

1

2

[80,90)

2

0.02

0

2

合计

100

1.00

45

55


(1)完成表格一中的空位①﹣④,并在答题卡中补全频率分布直方图,并估计2017年4月1日当日接待游客中30岁以下人数.
(2)完成表格二,并问你能否有97.5%的把握认为在观花游客中“年龄达到50岁以上”与“性别”相关?
(3)按分层抽样(分50岁以上与50以下两层)抽取被调查的100位游客中的10人作为幸运游客免费领取龙虎山内部景区门票,再从这10人中选取2人接受电视台采访,设这2人中年龄在50岁以上(含)的人数为ξ,求ξ的分布列 (表二)

50岁以上

50岁以下

合计

男生

5

40

45

女生

15

40

55

合计

20

80

100

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:k2= ,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年6月14日,第二十一届世界杯足球赛将在俄罗斯拉开帷幕.为了了解喜爱足球运动是否与性别有关,某体育台随机抽取100名观众进行统计,得到如下列联表.

(1)将列联表补充完整,并判断能否在犯错误的概率不超过0.001的前提下认为喜爱足球运动与性别有关?

(2)在不喜爱足球运动的观众中,按性别分别用分层抽样的方式抽取6人,再从这6人中随机抽取2人参加一台访谈节目,求这2人至少有一位男性的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司按现有能力,每月收入为70万元,公司分析部门测算,若不进行改革,入世后因竞争加剧收入将逐月减少.分析测算得入世第一个月收入将减少3万元,以后逐月多减少2万元,如果进行改革,即投入技术改造300万元,且入世后每月再投入1万元进行员工培训,则测算得自入世后第一个月起累计收入与时间(以月为单位)的关系为,且入世第一个月时收入将为90万元,第二个月时累计收入为170万元,问入世后经过几个月,该公司改革后的累计纯收入高于不改革时的累计纯收入.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C: =1(a>b>0)的离心率为 ,过右焦点F2(c,0)垂直于x轴的直线与椭圆交于A,B两点且|AB|= ,又过左焦点F1(﹣c,0)任作直线l交椭圆于点M
(1)求椭圆C的方程
(2)椭圆C上两点A,B关于直线l对称,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一(1)(2)两个班联合开展“诗词大会进校园,国学经典润心田”古诗词竞赛主题班会活动,主持人从这两个班分别随机选出20名同学进行当场测试,他们的测试成绩按[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)分组,分别用频率分布直方图与茎叶图统计如图(单位:分):
高一(2)班20名学生成绩茎叶图:

4

5

5

2

6

4 5 6 8

7

0 5 5 8 8 8 8 9

8

0 0 5 5

9

4 5

(Ⅰ)分别计算两个班这20名同学的测试成绩在[80,90)的频率,并补全频率分布直方图;
(Ⅱ)分别从两个班随机选取1人,设这两人中成绩在[80,90)的人数为X,求X的分布列(频率当作概率使用).
(Ⅲ)运用所学统计知识分析比较两个班学生的古诗词水平.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P1(x1 , y1),P2(x2 , y2),P3(x3 , y3),P4(x4 , y4),P5(x5 , y5),P6(x6 , y6)是抛物线C:y2=2px(p>0)上的点,F是抛物线C的焦点,若|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|=36,且x1+x2+x3+x4+x5+x6=24,则抛物线C的方程为(
A.y2=4x
B.y2=8x
C.y2=12x
D.y2=16x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定实数 t,已知命题 p:函数 有零点;命题 q: x∈[1,+∞) ≤4-1.

(Ⅰ)当 t=1 时,判断命题 q 的真假;

(Ⅱ)若 pq 为假命题,求 t 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:

甲厂:

分组

[29.86,29.90)

[29.90,29.94)

[29.94,29.98)

[29.98,30.02)

[30.02,30.06)

[30.06,30.10)

[30.10,30.14)

频数

12

63

86

182

92

61

4

乙厂:

分组

[29.86,29.90)

[29.90,29.94)

[29.94,29.98)

[29.98,30.02)

[30.02,30.06)

[30.06,30.10)

[30.10,30.14)

频数

29

71

85

159

76

62

18

(1)试分别估计两个分厂生产的零件的优质品率;

(2)由以上统计数据填下面列联表,并问是否有的把握认为“两个分厂生产的零件的质量有差异”.

甲 厂

乙 厂

合计

优质品

非优质品

合计

附:

查看答案和解析>>

同步练习册答案