精英家教网 > 高中数学 > 题目详情
6.若0<x<π,则函数y=lg(sinx-$\frac{1}{2}$)+$\sqrt{\frac{1}{2}-cosx}$的定义域是(  )
A.[$\frac{π}{3}$,$\frac{2}{3}π$)B.($\frac{π}{6}$,$\frac{5}{6}π$)C.[$\frac{π}{3}$,$\frac{5}{6}π$)D.($\frac{5}{6}π$,π)

分析 根据对数函数和根式函数成立的条件即可求函数的定义域.

解答 解:要使函数有意义,则$\left\{\begin{array}{l}{sinx-\frac{1}{2}>0}\\{\frac{1}{2}-cosx≥0}\end{array}\right.$,
即$\left\{\begin{array}{l}{sinx>\frac{1}{2}}\\{cosx≤\frac{1}{2}}\end{array}\right.$,
∵0<x<π,
∴$\left\{\begin{array}{l}{\frac{π}{6}<x<\frac{5π}{6}}\\{\frac{π}{3}≤x<π}\end{array}\right.$得$\frac{π}{3}$≤x<$\frac{5}{6}π$,
即函数的定义域为[$\frac{π}{3}$,$\frac{5}{6}π$),
故选:C.

点评 本题主要考查函数的定义域的求解,根据三角函数的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=x3-3x,x∈[0,2],则函数f(x)的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求y=(log${\;}_{\frac{1}{2}}$x)2-2log${\;}_{\frac{1}{2}}$x的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=lg(-x2+2x+15)的定义域为(  )
A.(-5,3)B.(-3,5)C.(-∞,-3)∪(5,+∞)D.(-∞,-5)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数在其定义域内既是奇函数又是减函数的是(  )
A.y=-lnxB.y=x${\;}^{\frac{1}{3}}$C.y=tanxD.y=e-x-ex

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2+$\frac{2{a}^{3}}{x}$+1.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与直线y=1平行,求a的值;
(Ⅱ)若0<a<2,求函数f(x)在区间[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,若点D满足$\overrightarrow{BD}=2\overrightarrow{DC}$,则$\overrightarrow{AD}$=(  )
A.$\frac{1}{3}\overrightarrow{AC}+\frac{2}{3}\overrightarrow{AB}$B.$\frac{5}{3}\overrightarrow{AB}-\frac{2}{3}\overrightarrow{AC}$C.$\frac{2}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}$D.$\frac{2}{3}\overrightarrow{AC}+\frac{1}{3}\overrightarrow{AB}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ex
(Ⅰ)求函数g(x)=sinx•f(x)在(0,π)上的单调区间;
(Ⅱ)求证:$\frac{f(a)-f(b)}{a-b}$<$\frac{f(a)+f(b)}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某零售店近五个月的销售额和利润额资料如下表:
商店名称ABCDE
销售额x/千万35679
利润额y/百万元23345
(1)求利润额y关于销售额x的线性回归方程.
(2)当销售额为4(千万元)时,利用(2)的结论估计该零售店的利润额(百万元).
(附:在线性回归方程$\widehat{y}$=$\widehat{b}$x$+\widehat{a}$中,$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-n\stackrel{-2}{x}}$,$\widehat{a}$=$\overline{y}$$-\widehat{b}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$为样本平均值.)

查看答案和解析>>

同步练习册答案