精英家教网 > 高中数学 > 题目详情
已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在点 (1,f(1))处切线的斜率是(  )
分析:由f(x)=2f(2-x)-x2+8x-8可进行赋值构造方程,联立方程组即可求出f(x),再利用导数的几何意义,求得切线的斜率.
解答:解:∵f(x)=2f(2-x)-x2+8x-8 ①,
赋值x→2-x可得,f(2-x)=2f(x)-(2-x)2+8(2-x)-8,
即f(2-x)=2f(x)-x2-4x+4 ②,
把①②联立可得,f(x)=2[2f(x)-x2-4x+4]-x2+8x-8,
∴f(x)=4f(x)-3x2
∴f(x)=x2
所以f′(x)=2x,
所以k=f′(1)=2,
故选A.
点评:本题考察了求函数的解析式,主要利用了构造方程组消元的方法.同时考察了导数的几何意义.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

1、已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在点(1,f(1))处的切线方程是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在R上满足y=f(x)=2f(2-x)+ex-1+x2,则曲线y=f(x)在点(1,f(1))处的切线方程是(  )
A、2x-y-1=0B、x-y-3=0C、3x-y-2=0D、2x+y-3=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在R上满足2f(x)+f(1-x)=3x2-2x+1,则曲线y=f(x)在点(1,f(1))处的切线方程是
2x-y-1=0
2x-y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在R上有定义,对任意实数a>0和任意实数x都有f(ax)=a﹒f(x).
(1)证明:f(0)=0
(2)若f(1)=1,求g(x)=
1f(x)
+f(x).(x>0)
的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在R上可导,函数F(x)=f(x2-4)+f(4-x2),则F′(2)=
 

查看答案和解析>>

同步练习册答案