【题目】已知定义在上的函数,为其导数,且恒成立,则( )
A. B.
C. D.
【答案】A
【解析】
通过,可以联想到导数运算的除法,这样可以构造新函数
,,这样就可以判断出函数在上的单调性,把四个选项变形,利用单调性判断出是否正确.
通过,这个结构形式,可以构造新函数,
,而,所以当时,,所以函数在上是单调递增函数,现对四个选项逐一判断:
选项A. ,可以判断是否正确,
也就是判断是否正确,即判断是否成立,因为,在上是单调递增函数,所以有,故选项A正确;
选项B.,也就是判断是否正确,即判断是否成立,即判断是否成立,因为,在上是单调递增函数,所以有,故选项B不正确;
选项C. ,也就是判断是否正确,即判断
是否成立,即判断是否成立,因为,在上是单调递增函数,所以有,故选项C不正确;
选项D.,也就是判断,是否成立,即判断是否成立,因为,在上是单调递增函数,所以有,因此选项D不正确,故本题选A.
科目:高中数学 来源: 题型:
【题目】已知,,其中为实常数.
(1)若函数在区间[2,3]上为单调递增函数,求的取值范围;
(2)高函数在区间上的最小值为,试讨论函数,的零点的情况.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥,下部分的形状是正四棱柱(如图所示),并要求正四棱柱的高是正四棱锥的高的4倍.
(1)若则仓库的容积是多少?
(2)若正四棱锥的侧棱长为,则当为多少时,仓库的容积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直角坐标系中,直线的参数方程为(为参数),以原点为极点, 轴的正半轴为极轴,以相同的长度单位建立极坐标系,曲线的极坐标方程为.
(Ⅰ)求直线的极坐标方程和曲线的直角坐标方程;
(Ⅱ)已知,直线与曲线交于, 两点,若,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地植被面积 (公顷)与当地气温下降的度数()之间有如下的对应数据:
(公顷) | 20 | 40 | 50 | 60 | 80 |
() | 3 | 4 | 4 | 4 | 5 |
(1)请用最小二乘法求出关于的线性回归方程;
(2)根据(1)中所求线性回归方程,如果植被面积为200公顷,那么下降的气温大约是多少?
参考公式:用最小二乘法求线性回归方程系数公式:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过圆与轴正半轴的交点A作圆O的切线,M为上任意一点,过M作圆O的另一条切线,切点为Q.当点M在直线上运动时,△MAQ的垂心的轨迹方程为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知直线l:-y+3+=0和圆:++8x+F=0.若直线l被圆截得的弦长为.
(1)求圆的方程;
(2)设圆和x轴相交于A,B两点,点P为圆上不同于A,B的任意一点,直线PA,PB交y轴于M,N两点.当点P变化时,以MN为直径的圆是否经过圆内一定点?请证明你的结论;
(3)若△RST的顶点R在直线x=-1上,点S,T在圆上,且直线RS过圆心,∠SRT=,求点R的纵坐标的范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com