精英家教网 > 高中数学 > 题目详情

【题目】在Rt△ABC中,∠C=90°,AC=4,BC=2,D是BC的中点,那么( =;若E是AB的中点,P是△ABC(包括边界)内任一点.则 的取值范围是

【答案】2;[﹣9,9]
【解析】解:∵在Rt△ABC中,∠C=90°,AC=4,BC=2,D是BC的中点,那么 = = + =16+4=20. ∴ = = = =2.
以CA所在的直线为x轴,以CB所在的直线为y轴,建立平面直角坐标系,则A的坐标为(4,0),B的坐标为(0,2),
由线段的中点公式可得点D的坐标为(0,1),点E的坐标为(2,1),设点P的坐标为(x,y),
则由题意可得可行域为△ABC及其内部区域,故有
令t= =(﹣4,1)(x﹣2,y﹣1)=7﹣4x+y,即 y=4x+t﹣7.
故当直线y=4x+t﹣7过点A(4,0)时,t取得最小值为7﹣16+0=﹣9,
当直线y=4x+t﹣7过点B(0,2)时,t取得最大值为 7﹣0+2=9,
故t= 的取值范围是[﹣9,9],
所以答案是 2,[﹣9,9].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列4个命题: ①“若a、G、b成等比数列,则G2=ab”的逆命题;
②“如果x2+x﹣6≥0,则x>2”的否命题;
③在△ABC中,“若A>B”则“sinA>sinB”的逆否命题;
④当0≤α≤π时,若8x2﹣(8sinα)x+cos2α≥0对x∈R恒成立,则α的取值范围是0≤α≤
其中真命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线l的参数方程为 (t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为3ρ2cos2θ+4ρ2sin2θ=12.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)已知直线l与曲线C交于A,B两点,试求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且(a﹣c)(sinA+sinC)=(a﹣b)sinB.
(1)求角C的大小;
(2)若c= ≤a,求2a﹣b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过点 和直线相切.

1)求圆的方程;

(2)若直线经过点并且被圆截得的弦长为2,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f′(x)是函数f(x)(x∈R)的导函数,f(0)=2,f′(x)﹣f(x)>ex , 则使得f(x)>xex+2ex成立的x的取值范围是(
A.(0,+∞)
B.(1,+∞)
C.(0,1)
D.(﹣∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足a1=2,an+1=an2+6an+6(n∈N×
(1)设Cn=log5(an+3),求证{Cn}是等比数列;
(2)求数列{an}的通项公式;
(3)设bn= ,数列{bn}的前n项和为Tn , 求证:﹣ ≤Tn<﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1(a>b>0)的离心率为 ,其左、右焦点为F1、F2 , 点P是坐标平面内一点,且|OP|= = ,其中O为坐标原点.

(1)求椭圆C的方程;
(2)如图,过点S(0,﹣ )的动直线l交椭圆于A、B两点,是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= + 的值域为

查看答案和解析>>

同步练习册答案