精英家教网 > 高中数学 > 题目详情
10.已知某工厂生产的一种零件内径尺寸服从正态分布N(22.5,0.12),则该零件尺寸大于22.5的概率为(  )
A.0.01B.0.1C.0.5D.0.9

分析 直接利用正态分布的特征,写出结果即可.

解答 解:工厂生产的一种零件内径尺寸服从正态分布N(22.5,0.12),
对称轴为μ=22.5,
所以该零件尺寸大于22.5的概率为:0.5.
故选:C.

点评 本题考查正态分布的性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.化简下列各式:
(1)$\sqrt{5-2\sqrt{6}}$+$\sqrt{7-4\sqrt{3}}$;
(2)$\sqrt{a+2\sqrt{a-1}}+\sqrt{a-2\sqrt{a-1}}$(a≥1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.f(x)在[-5,5]上是奇函数,且f(3)<f(1),则f(-3)与f(-1)的大小关系是>.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.命题p:{|0<x<1};命题q:{x|ax2+ax-1<0},若p是q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系中,△ABC为等腰直角三角形,∠A=90°,且A(3,1),B(1,0)
(Ⅰ)求点C的坐标;
(Ⅱ)设O为坐标原点,($\overrightarrow{AB}$-m$\overrightarrow{OC}$)∥$\overrightarrow{BC}$,且$\overrightarrow{OD}$=m$\overrightarrow{OC}$(m∈R),求|$\overrightarrow{OD}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若p、q分别是M到直线l1和l2的距离,则称有序非负实数对(p,q)是点M的“距离坐标”.已知常数p≥0,q≥0,给出下列命题:
①若p=q=0,则“距离坐标”为(0,0)点有且仅有1个;
②若p=0,q=1,则“距离坐标”为(0,1)的点有且仅有2个;
③若p=1,q=2,则“距离坐标”为(1,2)的点有且仅有4个.
上述命题中,正确命题的个数是(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.圆x2+y2-10x-10y=0和圆x2+y2-6x+2y-40=0的公共弦长是$4\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数y=sinxcosx.
(1)要得到函数y=-sin2x+$\frac{1}{2}$的图象,需将y=sinxcosx的图象怎么变换得到?
(2)把y=sinxcosx的图象向右平移$\frac{π}{6}$个单位,得到g(x)的图象,求g(x)的解析式,并用“五点法”作出它在一个周期内的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.计算:12×|3+4i|-10×(i2011+i2012+i2013+i2014)=60.(其中i为虚数单位)

查看答案和解析>>

同步练习册答案