精英家教网 > 高中数学 > 题目详情

【题目】如图,等边三角形的边长为,且其

三个顶点均在抛物线.

(Ⅰ)求抛物线的方程;

(Ⅱ)设动直线与抛物线相切于点,与直线

相交于点.证明以为直径的圆恒过轴上某定点.

【答案】(Ⅰ) (Ⅱ)证明见解析.

【解析】试题分析:(1)通过数形结合的方法确定抛物线上点的坐标,进而求出抛物线方程。

(2)由导数得到切线,进而得到交点和圆的方程,从而证明该命题.

试题解析(Ⅰ)依题意, .

,则

∵点上,

,解得

故抛物线的方程为

(Ⅱ)由(Ⅰ)知,

,则,且直线的方程为,即

联立,得

,此时

为直径的圆为,交轴于

为直径的圆为,交轴于

故若满足条件的点存在,只能是

以下证明点即为所求的点

因为

故以为直径的圆恒过轴上的定点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马, 田忌的下等马劣于齐王的下等马.现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点,动圆经过点且和直线相切,记动圆的圆心的轨迹为曲线.

(1)求曲线的方程;

(2)设曲线上一点的横坐标为,过的直线交于一点,交轴于点,过点的垂线交于另一点,若的切线,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,由直三棱柱和四棱锥构成的几何体中, ,平面平面

Ⅰ)求证:

Ⅱ)在线段上是否存在点,使直线与平面所成的角为?若存在,求的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 如图,在四棱锥P﹣ABCD中,侧面PAD底面ABCD,侧棱PA=PD= ,PA⊥PD,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O为AD中点.

(1) 求直线PB与平面POC所成角的余弦值;

(2)线段上是否存在一点,使得二面角的余弦值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正方形的边长为,点分别在边上, 的交点为 ,现将沿线段折起到位置,使得

(1)求证:平面平面

(2)求五棱锥的体积;

(3)在线段上是否存在一点,使得平面?若存在,求;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,椭圆 的左焦点是,离心率为,且上任意一点的最短距离为.

(1)求的方程;

(2)过点的直线(不过原点)与交于两点 为线段的中点.

(i)证明:直线的斜率乘积为定值;

(ii)求面积的最大值及此时的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题:函数的定义域为;命题:关于的方程有实根.

(1)如果是真命题,求实数的取值范围.

(2)如果命题“”为真命题,且“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一装有水的直三棱柱容器(厚度忽略不计),上下底面均为边长为5的正三角形,侧棱为10,侧面水平放置,如图所示,点 分别在棱 上,水面恰好过点 ,且

(1)证明:

(2)若底面水平放置时,求水面的高.

查看答案和解析>>

同步练习册答案