精英家教网 > 高中数学 > 题目详情

【题目】如图,某公园有三条观光大道围成直角三角形,其中直角边,斜边.现有甲、乙、丙三位小朋友分别在大道上嬉戏,所在位置分别记为点

(1)若甲乙都以每分钟的速度从点出发在各自的大道上奔走,到大道的另一端

时即停,乙比甲迟2分钟出发,当乙出发1分钟后,求此时甲乙两人之间的距离;

(2)设,乙丙之间的距离是甲乙之间距离的2倍,且,请将甲

乙之间的距离表示为θ的函数,并求甲乙之间的最小距离.

【答案】

【解析】试题分析:(1)先求出B,在三角形BDE中,利用余弦定理求出DE(2)先在直角三角形CEF中求出,在三角形BDE中由正弦定理得代入得出y与θ的关系,求出最小值.

试题解析:

(1)依题意得BD=300,BE=100,在三角形ABC中 在三角形BDE中,由余弦定理得

(2)由题意得 ,在直角三角形CEF中,

在三角形BDE中由正弦定理得

所以当时, 有最小值. 即甲乙之间的最小距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求的极值;

(Ⅱ)若函数的图像与函数的图像在区间上有公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,一直线过点

①若直线在两坐标轴上截距之和为12,求直线的方程;

②若直线 轴正半轴交于 两点,当面积为 时求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中实数

(Ⅰ)判断是否为函数的极值点,并说明理由;

(Ⅱ)若在区间上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在抛物线 的准线上,记的焦点为,过点且与轴垂直的直线与抛物线交于 两点,则线段的长为( )

A. 4 B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是等差数列,满足,数列满足,且为等比数列.

(1)求数列的通项公式;

(2)求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是边长为2的正方形, ,且 中点.

(Ⅰ)求证: 平面;  

求二面角的平面角的余弦.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点, 轴正半轴为极轴建立极坐标系,

已知某圆的极坐标方程为:

(1)将极坐标方程化为直角坐标方程;

(2)若点 在该圆上,求的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的奇函数,且当时, ,则对任意,函数的零点个数至多有( )

A. 3个 B. 4个 C. 6个 D. 9个

查看答案和解析>>

同步练习册答案