精英家教网 > 高中数学 > 题目详情

【题目】设抛物线y2=8x的焦点为F,准线为lP为抛物线上一点,PAlA为垂足.如果直线AF的斜率为-,那么|PF|=(  )

A. 4 B. 8 C. 8 D. 16

【答案】B

【解析】

先根据抛物线方程求出焦点坐标和准线方程,根据直线AF的斜率得到AF方程,与准线方程联立,解出A点坐标,因为
PA垂直准线l,所以P点与A点纵坐标相同,再代入抛物线方程求P点横坐标,利用抛物线的定义就可求出|PF|长.

:∵抛物线方程为y2=8x,
∴焦点F(2,0),准线l方程为x=-2,
∵直线AF的斜率为-,直线AF的方程为y=-(x-2),
可得A点坐标为(-2,4
∵PA⊥l,A为垂足,
∴P点纵坐标为4,代入抛物线方程,得P点坐标为(6,4),
∴|PF|=|PA|=6-(-2)=8.
故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在空间中,设m,n为两条不同直线,α,β为两个不同平面,则下列命题正确的是(  )

A. mααβ,则mβ

B. αβ,mα,nβ,则mn

C. mααβ,则mβ

D. m不垂直于α,且nα,则m必不垂直于n

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x)=2|xm|﹣1(m为实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为(
A.a<b<c
B.c<a<b
C.a<c<b
D.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=loga(x+1),g(x)=loga(1﹣x),a>0且a≠1,则使f(x)﹣g(x)>0成立的x的集合是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲厂以x千克/小时的速度运输生产某种产品(生产条件要求1≤x≤10),每小时可获得利润是100(5x+1﹣ )元.
(1)写出生产该产品t(t≥0)小时可获得利润的表达式;
(2)要使生产该产品2 小时获得的利润不低于3000元,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的图形是由一个半径为2的圆和两个半径为1的半圆组成,它们的圆心分别为O,O1 , O2 . 动点P从A点出发沿着圆弧按A→O→B→C→A→D→B的路线运动(其中A,O1 , O,O2 , B五点共线),记点P运动的路程为x,设y=|O1P|2 , y与x的函数关系为y=f(x),则y=f(x)的大致图象是(

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点P(1,f(1))处的切线方程为y=3x+1,y=f(x)x=-2处有极值.

(1)f(x)的解析式.

(2)y=f(x)[-3,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有下列结论:

(1)命题 为真命题

(2)设,则 p q 的充分不必要条件

(3)命题:若,则,其否命题是假命题;

(4)非零向量满足,则的夹角为.

其中正确的结论有(

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣(a+2)x+alnx,其中常数a>0.
(1)当a>2时,求函数f(x)的单调递增区间;
(2)设定义在D上的函数y=h(x)在点P(x0 , h(x0))处的切线方程为l:y=g(x),若 >0在D内恒成立,则称P为函数y=h(x)的“类对称点”.当a=4时,试问y=f(x)是否存在“类对称点”,若存在,请至少求出一个“类对称点”的横坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案