精英家教网 > 高中数学 > 题目详情

【题目】某地政府拟在该地一水库上建造一座水电站,用泄流水量发电.下图是根据该水库历年的日泄流量的水文资料画成的日泄流量X(单位:万立方米)的频率分布直方图(不完整),已知,历年中日泄流量在区间[30,60)

的年平均天数为156,一年按364天计.

(Ⅰ)请把频率分布直方图补充完整;

(Ⅱ)该水电站希望安装的发电机尽可能运行,但每30万立方米的日泄流量才够运行一台发电机,如时才够运行两台发电机,若运行一台发电机,每天可获利润为4000元,若不运行,则该台发电机每天亏损500元,以各段的频率作为相应段的概率,以水电站日利润的期望值为决策依据,问:为使水电站日利润的期望值最大,该水电站应安装多少台发电机?

【答案】(Ⅰ)见解析;(Ⅱ)要使水电站日利润的期望值最大,该水电站应安装3台发电机.

【解析】试题分析:(Ⅰ)可利用频率分布直方图的性质,补全图像;

(Ⅱ)分别计算安装1台,2台,3台的日利润的期望值,然后进行比较.

试题解析:

(Ⅰ)在区间[30,60)的频率为

设在区间[0,30)上,

解得

补充频率分布直方图如图;

(Ⅱ)记水电站日利润为Y元.由(Ⅰ)知:不能运行发电机的概率为,恰好运行一台发电机的概率为,恰好运行二台发电机的概率为,恰好运行三台发电机的概率为

①若安装1台发电机,则Y的值为-500,4000,其分布列为

Y

-500

4000

P

E(Y)=

②若安装2台发电机,则Y的值为-1000,3500,8000,其分布列为

Y

-1000

3500

8000

P

E(Y)=

③若安装3台发电机,则Y的值为-1500,3000,7500,12000,其分布列为

Y

-1500

3000

7500

12000

P

E(Y)=

∴要使水电站日利润的期望值最大,该水电站应安装3台发电机.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)若上存在极值点,求的取值范围;

(2)设 ,若存在最大值,记为,则当时, 是否存在最大值?若存在,求出其最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究一种昆虫的产卵数和温度是否有关,现收集了7组观测数据列于下表中,并作出了散点图,发现样本点并没有分布在某个带状区域内,两个变量并不呈线性相关关系,现分别用模型①:与模型②:作为产卵数和温度的回归方程来建立两个变量之间的关系.

温度

20

22

24

26

28

30

32

产卵数/个

6

10

21

24

64

113

322

400

484

576

676

784

900

1024

1.79

2.30

3.04

3.18

4.16

4.73

5.77

26

692

80

3.57

1157.54

0.43

0.32

0.00012

其中

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为: .

(1)在答题卡中分别画出关于的散点图、关于的散点图,根据散点图判断哪一个模型更适宜作为回归方程类型?(给出判断即可,不必说明理由).

(2)根据表中数据,分别建立两个模型下建立关于的回归方程;并在两个模型下分别估计温度为时的产卵数.(与估计值均精确到小数点后两位)(参考数据:

(3)若模型①、②的相关指数计算得分分别为 ,请根据相关指数判断哪个模型的拟合效果更好.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中错误的是( )

A. 如果平面外的直线不平行于平面,则平面内不存在与平行的直线

B. 如果平面平面,平面平面,那么直线平面

C. 如果平面平面,那么平面内所有直线都垂直于平面

D. 一条直线与两个平行平面中的一个平面相交,则必与另一个平面相交

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)在如图所示的五面体中,面为直角梯形, ,平面平面是边长为2的正三角形.

(1)证明: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着手机的发展,“微信”越来越成为人们交流的一种方式.某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如下表.

年龄(单位:岁)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75)

频数

5

10

15

10

5

5

赞成人数

5

10

12

7

2

1

(Ⅰ)若以“年龄45岁为分界点”,由以上统计数据完成下面列联表,并判断是否有99%的把握认为“使用微信交流”的态度与人的年龄有关;

年龄不低于45岁的人数

年龄低于45岁的人数

合计

赞成

不赞成

合计

(Ⅱ)若从年龄在[25,35)和[55,65)的被调查人中按照分层抽样的方法选取6人进行追踪调查,并给予其中3人“红包”奖励,求3人中至少有1人年龄在[55,65)的概率.

参考数据如下:

附临界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

的观测值: (其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)讨论的单调性;

(Ⅱ)设,证明:当时,

(Ⅲ)设的两个零点,证明 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,在区间内任取两个实数,且,若不等式恒成立,则实数的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据已往经验,潜水员下潜的平均速度为(米/单位时间),每单位时间的用氧量为(升),在水底作业10个单位时间,每单位时间用氧量为(升),返回水面的平均速度为(米/单位时间),每单位时间用氧量为(升),记该潜水员在此次考察活动中的总用氧量为(升).

(1)求关于的函数关系式;

(2)若,求当下潜速度取什么值时,总用氧量最少.

查看答案和解析>>

同步练习册答案