【题目】某海滨浴场一天的海浪高度是时间的函数,记作,下表是某天各时的浪高数据:
0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | |
1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
(1)选用一个三角函数来近似描述这个海滨浴场的海浪高度与时间的函数关系;
(2)依据规定,当海浪高度不少于时才对冲浪爱好者开放海滨浴场,请依据(1)的结论,判断一天内的至之间,有多少时间可供冲浪爱好者进行冲浪?
科目:高中数学 来源: 题型:
【题目】(题文)在直角坐标系中,直线的参数方程为为参数)在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.
(1)写出直线的普通方程与曲线的直角坐标方程;
(2)设点.若直线与曲线相交于不同的两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个容器的盖子用一个正四棱台和一个球焊接而成,球的半径为R,正四棱台的上、下底面边长分别为2.5R和3R,斜高为0.6R
(1)求这个容器盖子的表面积(用R表示,焊接处对面积的影响忽略不记);
(2)若R=2cm,为盖子涂色时所用的涂料每0.4kg可以涂1m2,计算100个这样的盖子约需涂料多少kg(精确到0.1kg)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2α﹣4cosα=0.已知直线l的参数方程为(为参数),点M的直角坐标为.
(1)求直线l和曲线C的普通方程;
(2)设直线l与曲线C交于A,B两点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种出口产品的关税税率为,市场价格(单位:千元)与市场供应量(单位:万件)之间近似满足关系式:,其中、均为常数.当关税税率时,若市场价格为5千元,则市场供应量约为1万件;若市场价格为7千元,则市场供应量约为2万件.
(1)试确定、的值;
(2)市场需求量(单位:万件)与市场价格近似满足关系式:,当时,市场价格称为市场平衡价格,当市场平衡价格不超过4千元时,试确定关税税率的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:,过上一动点作轴,垂足为点.当点满足时,点的轨迹恰是一个圆.
(1)求椭圆的离心率;
(2)若与曲线切于点的直线与椭圆交于,两点,且当轴时,,求的最大面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com